Spaces:
Sleeping
Sleeping
Upload 16 files
Browse files- .gitattributes +1 -0
- .gitignore +163 -0
- Makefile +9 -0
- app.py +100 -0
- application.ipynb +226 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/added_tokens.json +13 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/config.json +35 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/configuration_phi3.py +213 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/genai_config.json +53 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi3-mini-4k-instruct-cpu-int4-rtn-block-32-acc-level-4.onnx +3 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi3-mini-4k-instruct-cpu-int4-rtn-block-32-acc-level-4.onnx.data +3 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/special_tokens_map.json +30 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.json +0 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.model +3 -0
- cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer_config.json +130 -0
- pre_processing.py +51 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi3-mini-4k-instruct-cpu-int4-rtn-block-32-acc-level-4.onnx.data filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
phi3_env/
|
163 |
+
cpu_and_mobile/
|
Makefile
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
install:
|
2 |
+
pip install --upgrade pip &&\
|
3 |
+
pip install -r requirements.txt
|
4 |
+
|
5 |
+
phi3_dependency:
|
6 |
+
pip install huggingface-hub[cli]
|
7 |
+
huggingface-cli download microsoft/Phi-3-mini-4k-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .
|
8 |
+
pip install numpy
|
9 |
+
pip install --pre onnxruntime-genai
|
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from pypdf import PdfReader
|
4 |
+
import onnxruntime_genai as og
|
5 |
+
import os
|
6 |
+
|
7 |
+
import pre_processing
|
8 |
+
from pre_processing import embedding_model
|
9 |
+
|
10 |
+
|
11 |
+
base_path = os.getcwd()
|
12 |
+
|
13 |
+
model_path = os.path.join(base_path, 'cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4')
|
14 |
+
model = og.Model(model_path)
|
15 |
+
tokenizer = og.Tokenizer(model)
|
16 |
+
tokenizer_stream = tokenizer.create_stream()
|
17 |
+
|
18 |
+
# params = og.GeneratorParams(model)
|
19 |
+
# params.try_graph_capture_with_max_batch_size(1)
|
20 |
+
|
21 |
+
def doc_processing(uploaded_pdf,var):
|
22 |
+
first_section = "abstract"
|
23 |
+
ignore_after = "references"
|
24 |
+
reader = PdfReader(uploaded_pdf)
|
25 |
+
context_list = pre_processing.parese_doc(reader,first_section,ignore_after)
|
26 |
+
index = pre_processing.create_embedding(context_list)
|
27 |
+
|
28 |
+
|
29 |
+
return {input_box: gr.Textbox(value="Ask a question", visible=True),
|
30 |
+
state_var:[context_list,index]}
|
31 |
+
|
32 |
+
def response_generator(text,var1):
|
33 |
+
context_list,index = var1
|
34 |
+
chat_template = '<|user|>\nYou are an Research Assistant. You will provide short and precise answer.<|end|>\n<|assistant|>\nYes I will keep the answer short and precise.<|end|>\n<|user|>\n{input} <|end|>\n<|assistant|>'
|
35 |
+
search_options ={}
|
36 |
+
search_options['temperature'] = 1
|
37 |
+
search_options['max_length'] = 2000
|
38 |
+
|
39 |
+
query_embedding = embedding_model.encode(text).reshape(1, -1)
|
40 |
+
top_k = 1
|
41 |
+
_scores, binary_ids = index.search(query_embedding, top_k)
|
42 |
+
binary_ids = binary_ids[0]
|
43 |
+
_scores = _scores[0]
|
44 |
+
temp_list = []
|
45 |
+
for idx in binary_ids:
|
46 |
+
temp_list.append(context_list[idx])
|
47 |
+
context = '. '.join(temp_list)
|
48 |
+
|
49 |
+
text += " with respect to context: "+context
|
50 |
+
|
51 |
+
|
52 |
+
prompt = f'{chat_template.format(input=text)}'
|
53 |
+
input_tokens = tokenizer.encode(prompt)
|
54 |
+
params = og.GeneratorParams(model)
|
55 |
+
params.try_graph_capture_with_max_batch_size(1)
|
56 |
+
params.set_search_options(**search_options)
|
57 |
+
params.input_ids = input_tokens
|
58 |
+
generator = og.Generator(model, params)
|
59 |
+
|
60 |
+
output = ""
|
61 |
+
while not generator.is_done():
|
62 |
+
generator.compute_logits()
|
63 |
+
generator.generate_next_token()
|
64 |
+
new_token = generator.get_next_tokens()[0]
|
65 |
+
p_word = tokenizer_stream.decode(new_token)
|
66 |
+
output+=p_word
|
67 |
+
yield {output_box:output}
|
68 |
+
del generator
|
69 |
+
|
70 |
+
def submit():
|
71 |
+
return {input_box: gr.Textbox(visible=True)}
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
|
75 |
+
gr.Markdown(
|
76 |
+
"""
|
77 |
+
# Phi3 3.8B
|
78 |
+
|
79 |
+
## RAG - Topic based pdf Q/A
|
80 |
+
|
81 |
+
- ***LLM:*** Phi3 Mini
|
82 |
+
- ***Embedding:*** nomic-embed-text-v1
|
83 |
+
|
84 |
+
""")
|
85 |
+
|
86 |
+
state_var = gr.State([])
|
87 |
+
|
88 |
+
with gr.Row():
|
89 |
+
upload_button = gr.UploadButton("📁 Upload PDF", file_types=[".pdf"])
|
90 |
+
error_box = gr.Textbox(label="Error", visible=False)
|
91 |
+
|
92 |
+
input_box = gr.Textbox(autoscroll=True,visible=False,label='User')
|
93 |
+
output_box = gr.Textbox(autoscroll=True,max_lines=30,value="Output",label='Assistant')
|
94 |
+
gr.Interface(fn=response_generator, inputs=[input_box,state_var], outputs=[output_box,state_var],delete_cache=(20,10))
|
95 |
+
|
96 |
+
upload_button.upload(doc_processing,inputs=[upload_button,state_var],outputs=[input_box,state_var],queue=False,show_progress=True,trigger_mode="once")
|
97 |
+
upload_button.upload(submit,None,input_box)
|
98 |
+
|
99 |
+
demo.queue()
|
100 |
+
demo.launch()
|
application.ipynb
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# Import Libraries"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"from pypdf import PdfReader\n",
|
17 |
+
"import os"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"import pre_processing"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "markdown",
|
31 |
+
"metadata": {},
|
32 |
+
"source": [
|
33 |
+
"# Load Embedding Model"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"from pre_processing import embedding_model"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "markdown",
|
47 |
+
"metadata": {},
|
48 |
+
"source": [
|
49 |
+
"# Process Doc"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {},
|
56 |
+
"outputs": [],
|
57 |
+
"source": [
|
58 |
+
"base_path = os.getcwd()\n",
|
59 |
+
"file_name = 'attention_is_all_you_need.pdf'\n",
|
60 |
+
"full_path = os.path.join(base_path,file_name)\n",
|
61 |
+
"reader = PdfReader(full_path)"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {},
|
68 |
+
"outputs": [],
|
69 |
+
"source": [
|
70 |
+
"first_section = \"abstract\"\n",
|
71 |
+
"ignore_after = \"references\""
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"context_list = pre_processing.parese_doc(reader,first_section,ignore_after)\n",
|
81 |
+
"index = pre_processing.create_embedding(context_list)"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "markdown",
|
86 |
+
"metadata": {},
|
87 |
+
"source": [
|
88 |
+
"# Linking ONXX Model"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"execution_count": null,
|
94 |
+
"metadata": {},
|
95 |
+
"outputs": [],
|
96 |
+
"source": [
|
97 |
+
"import onnxruntime_genai as og"
|
98 |
+
]
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"cell_type": "code",
|
102 |
+
"execution_count": null,
|
103 |
+
"metadata": {},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"phi3_model_path = 'cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4'\n",
|
107 |
+
"full_model_path = os.path.join(base_path,phi3_model_path)"
|
108 |
+
]
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"cell_type": "code",
|
112 |
+
"execution_count": null,
|
113 |
+
"metadata": {},
|
114 |
+
"outputs": [],
|
115 |
+
"source": [
|
116 |
+
"model = og.Model(full_model_path)\n",
|
117 |
+
"tokenizer = og.Tokenizer(model)\n",
|
118 |
+
"tokenizer_stream = tokenizer.create_stream()"
|
119 |
+
]
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"execution_count": null,
|
124 |
+
"metadata": {},
|
125 |
+
"outputs": [],
|
126 |
+
"source": [
|
127 |
+
"chat_template = '<|user|>\\n{input} <|end|>\\n<|assistant|>'"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": null,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"search_options ={}\n",
|
137 |
+
"search_options['temperature'] = 1\n",
|
138 |
+
"#search_options['max_length'] = 4000"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"while True:\n",
|
148 |
+
" text = input(\"Input: \")\n",
|
149 |
+
" if not text:\n",
|
150 |
+
" print(\"Error, input cannot be empty\")\n",
|
151 |
+
" break\n",
|
152 |
+
"\n",
|
153 |
+
" query_embedding = embedding_model.encode(text).reshape(1, -1)\n",
|
154 |
+
" top_k = 1\n",
|
155 |
+
" _scores, binary_ids = index.search(query_embedding, top_k)\n",
|
156 |
+
" binary_ids = binary_ids[0]\n",
|
157 |
+
" _scores = _scores[0]\n",
|
158 |
+
" temp_list = []\n",
|
159 |
+
" for idx in binary_ids:\n",
|
160 |
+
" temp_list.append(context_list[idx])\n",
|
161 |
+
" context = '. '.join(temp_list)\n",
|
162 |
+
" \n",
|
163 |
+
" text += \" With respect to context: \"+context\n",
|
164 |
+
" \n",
|
165 |
+
"\n",
|
166 |
+
" prompt = f'{chat_template.format(input=text)}'\n",
|
167 |
+
" input_tokens = tokenizer.encode(prompt)\n",
|
168 |
+
"\n",
|
169 |
+
" params = og.GeneratorParams(model)\n",
|
170 |
+
" params.try_graph_capture_with_max_batch_size(1)\n",
|
171 |
+
" params.set_search_options(**search_options)\n",
|
172 |
+
" params.input_ids = input_tokens\n",
|
173 |
+
" generator = og.Generator(model, params)\n",
|
174 |
+
"\n",
|
175 |
+
" print()\n",
|
176 |
+
" print(\"Output: \", end='', flush=True)\n",
|
177 |
+
"\n",
|
178 |
+
" try:\n",
|
179 |
+
" while not generator.is_done():\n",
|
180 |
+
" generator.compute_logits()\n",
|
181 |
+
" generator.generate_next_token()\n",
|
182 |
+
" new_token = generator.get_next_tokens()[0]\n",
|
183 |
+
" print(tokenizer_stream.decode(new_token), end='', flush=True)\n",
|
184 |
+
" except KeyboardInterrupt:\n",
|
185 |
+
" print(\" --control+c pressed, aborting generation--\")\n",
|
186 |
+
" print()\n",
|
187 |
+
" print()"
|
188 |
+
]
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"cell_type": "code",
|
192 |
+
"execution_count": null,
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [],
|
195 |
+
"source": []
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [],
|
202 |
+
"source": []
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"metadata": {
|
206 |
+
"kernelspec": {
|
207 |
+
"display_name": ".phi3_env",
|
208 |
+
"language": "python",
|
209 |
+
"name": "python3"
|
210 |
+
},
|
211 |
+
"language_info": {
|
212 |
+
"codemirror_mode": {
|
213 |
+
"name": "ipython",
|
214 |
+
"version": 3
|
215 |
+
},
|
216 |
+
"file_extension": ".py",
|
217 |
+
"mimetype": "text/x-python",
|
218 |
+
"name": "python",
|
219 |
+
"nbconvert_exporter": "python",
|
220 |
+
"pygments_lexer": "ipython3",
|
221 |
+
"version": "3.10.12"
|
222 |
+
}
|
223 |
+
},
|
224 |
+
"nbformat": 4,
|
225 |
+
"nbformat_minor": 2
|
226 |
+
}
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/added_tokens.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|endoftext|>": 32000,
|
3 |
+
"<|assistant|>": 32001,
|
4 |
+
"<|placeholder1|>": 32002,
|
5 |
+
"<|placeholder2|>": 32003,
|
6 |
+
"<|placeholder3|>": 32004,
|
7 |
+
"<|placeholder4|>": 32005,
|
8 |
+
"<|system|>": 32006,
|
9 |
+
"<|end|>": 32007,
|
10 |
+
"<|placeholder5|>": 32008,
|
11 |
+
"<|placeholder6|>": 32009,
|
12 |
+
"<|user|>": 32010
|
13 |
+
}
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/Phi-3-mini-4k-instruct-onnx",
|
3 |
+
"architectures": [
|
4 |
+
"Phi3ForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_phi3.Phi3Config",
|
9 |
+
"AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
|
10 |
+
},
|
11 |
+
"bos_token_id": 1,
|
12 |
+
"embd_pdrop": 0.0,
|
13 |
+
"eos_token_id": 32000,
|
14 |
+
"hidden_act": "silu",
|
15 |
+
"hidden_size": 3072,
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 8192,
|
18 |
+
"max_position_embeddings": 4096,
|
19 |
+
"model_type": "phi3",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_hidden_layers": 32,
|
22 |
+
"num_key_value_heads": 32,
|
23 |
+
"original_max_position_embeddings": 4096,
|
24 |
+
"pad_token_id": 32000,
|
25 |
+
"resid_pdrop": 0.0,
|
26 |
+
"rms_norm_eps": 1e-05,
|
27 |
+
"rope_scaling": null,
|
28 |
+
"rope_theta": 10000.0,
|
29 |
+
"sliding_window": 2047,
|
30 |
+
"tie_word_embeddings": false,
|
31 |
+
"torch_dtype": "bfloat16",
|
32 |
+
"transformers_version": "4.39.3",
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 32064
|
35 |
+
}
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/configuration_phi3.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" Phi-3 model configuration"""
|
17 |
+
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
|
27 |
+
"microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
class Phi3Config(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the
|
36 |
+
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
|
37 |
+
|
38 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
39 |
+
documentation from [`PretrainedConfig`] for more information.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32064):
|
43 |
+
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`Phi3Model`].
|
45 |
+
hidden_size (`int`, *optional*, defaults to 3072):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 8192):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
resid_pdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
Dropout probability for mlp outputs.
|
63 |
+
embd_pdrop (`int`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for the embeddings.
|
65 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
66 |
+
The dropout ratio after computing the attention scores.
|
67 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
68 |
+
The non-linear activation function (function or string) in the decoder.
|
69 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
70 |
+
The maximum sequence length that this model might ever be used with.
|
71 |
+
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
|
72 |
+
The maximum sequence length that this model was trained with. This is used to determine the size of the
|
73 |
+
original RoPE embeddings when using long scaling.
|
74 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
75 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
76 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
77 |
+
The epsilon value used for the RMSNorm.
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
80 |
+
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
|
81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
82 |
+
Whether to tie weight embeddings
|
83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
84 |
+
The base period of the RoPE embeddings.
|
85 |
+
rope_scaling (`dict`, *optional*):
|
86 |
+
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
|
87 |
+
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
|
88 |
+
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
|
89 |
+
divided by the number of attention heads divided by 2.
|
90 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
91 |
+
The id of the "beginning-of-sequence" token.
|
92 |
+
eos_token_id (`int`, *optional*, defaults to 32000):
|
93 |
+
The id of the "end-of-sequence" token.
|
94 |
+
pad_token_id (`int`, *optional*, defaults to 32000):
|
95 |
+
The id of the padding token.
|
96 |
+
sliding_window (`int`, *optional*):
|
97 |
+
Sliding window attention window size. If `None`, no sliding window is applied.
|
98 |
+
|
99 |
+
Example:
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import Phi3Model, Phi3Config
|
103 |
+
|
104 |
+
>>> # Initializing a Phi-3 style configuration
|
105 |
+
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
106 |
+
|
107 |
+
>>> # Initializing a model from the configuration
|
108 |
+
>>> model = Phi3Model(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "phi3"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32064,
|
120 |
+
hidden_size=3072,
|
121 |
+
intermediate_size=8192,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
resid_pdrop=0.0,
|
126 |
+
embd_pdrop=0.0,
|
127 |
+
attention_dropout=0.0,
|
128 |
+
hidden_act="silu",
|
129 |
+
max_position_embeddings=4096,
|
130 |
+
original_max_position_embeddings=4096,
|
131 |
+
initializer_range=0.02,
|
132 |
+
rms_norm_eps=1e-5,
|
133 |
+
use_cache=True,
|
134 |
+
tie_word_embeddings=False,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
bos_token_id=1,
|
138 |
+
eos_token_id=32000,
|
139 |
+
pad_token_id=32000,
|
140 |
+
sliding_window=None,
|
141 |
+
**kwargs,
|
142 |
+
):
|
143 |
+
self.vocab_size = vocab_size
|
144 |
+
self.hidden_size = hidden_size
|
145 |
+
self.intermediate_size = intermediate_size
|
146 |
+
self.num_hidden_layers = num_hidden_layers
|
147 |
+
self.num_attention_heads = num_attention_heads
|
148 |
+
|
149 |
+
if num_key_value_heads is None:
|
150 |
+
num_key_value_heads = num_attention_heads
|
151 |
+
|
152 |
+
self.num_key_value_heads = num_key_value_heads
|
153 |
+
self.resid_pdrop = resid_pdrop
|
154 |
+
self.embd_pdrop = embd_pdrop
|
155 |
+
self.attention_dropout = attention_dropout
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.max_position_embeddings = max_position_embeddings
|
158 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
159 |
+
self.initializer_range = initializer_range
|
160 |
+
self.rms_norm_eps = rms_norm_eps
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.rope_theta = rope_theta
|
163 |
+
self.rope_scaling = rope_scaling
|
164 |
+
self._rope_scaling_validation()
|
165 |
+
self.sliding_window = sliding_window
|
166 |
+
|
167 |
+
super().__init__(
|
168 |
+
bos_token_id=bos_token_id,
|
169 |
+
eos_token_id=eos_token_id,
|
170 |
+
pad_token_id=pad_token_id,
|
171 |
+
tie_word_embeddings=tie_word_embeddings,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
|
175 |
+
def _rope_scaling_validation(self):
|
176 |
+
"""
|
177 |
+
Validate the `rope_scaling` configuration.
|
178 |
+
"""
|
179 |
+
if self.rope_scaling is None:
|
180 |
+
return
|
181 |
+
|
182 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
|
183 |
+
raise ValueError(
|
184 |
+
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
|
185 |
+
f"got {self.rope_scaling}"
|
186 |
+
)
|
187 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
188 |
+
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
|
189 |
+
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
|
190 |
+
if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
|
191 |
+
raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
|
192 |
+
if not (
|
193 |
+
isinstance(rope_scaling_short_factor, list)
|
194 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
|
195 |
+
):
|
196 |
+
raise ValueError(
|
197 |
+
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
|
198 |
+
)
|
199 |
+
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
|
200 |
+
raise ValueError(
|
201 |
+
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
|
202 |
+
)
|
203 |
+
if not (
|
204 |
+
isinstance(rope_scaling_long_factor, list)
|
205 |
+
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
|
206 |
+
):
|
207 |
+
raise ValueError(
|
208 |
+
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
|
209 |
+
)
|
210 |
+
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
|
211 |
+
raise ValueError(
|
212 |
+
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
|
213 |
+
)
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/genai_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"context_length": 4096,
|
5 |
+
"decoder": {
|
6 |
+
"session_options": {
|
7 |
+
"log_id": "onnxruntime-genai",
|
8 |
+
"provider_options": []
|
9 |
+
},
|
10 |
+
"filename": "phi3-mini-4k-instruct-cpu-int4-rtn-block-32-acc-level-4.onnx",
|
11 |
+
"head_size": 96,
|
12 |
+
"hidden_size": 3072,
|
13 |
+
"inputs": {
|
14 |
+
"input_ids": "input_ids",
|
15 |
+
"attention_mask": "attention_mask",
|
16 |
+
"past_key_names": "past_key_values.%d.key",
|
17 |
+
"past_value_names": "past_key_values.%d.value"
|
18 |
+
},
|
19 |
+
"outputs": {
|
20 |
+
"logits": "logits",
|
21 |
+
"present_key_names": "present.%d.key",
|
22 |
+
"present_value_names": "present.%d.value"
|
23 |
+
},
|
24 |
+
"num_attention_heads": 32,
|
25 |
+
"num_hidden_layers": 32,
|
26 |
+
"num_key_value_heads": 32
|
27 |
+
},
|
28 |
+
"eos_token_id": [
|
29 |
+
32000,
|
30 |
+
32001,
|
31 |
+
32007
|
32 |
+
],
|
33 |
+
"pad_token_id": 32000,
|
34 |
+
"type": "phi3",
|
35 |
+
"vocab_size": 32064
|
36 |
+
},
|
37 |
+
"search": {
|
38 |
+
"diversity_penalty": 0.0,
|
39 |
+
"do_sample": false,
|
40 |
+
"early_stopping": true,
|
41 |
+
"length_penalty": 1.0,
|
42 |
+
"max_length": 4096,
|
43 |
+
"min_length": 0,
|
44 |
+
"no_repeat_ngram_size": 0,
|
45 |
+
"num_beams": 1,
|
46 |
+
"num_return_sequences": 1,
|
47 |
+
"past_present_share_buffer": true,
|
48 |
+
"repetition_penalty": 1.0,
|
49 |
+
"temperature": 1.0,
|
50 |
+
"top_k": 1,
|
51 |
+
"top_p": 1.0
|
52 |
+
}
|
53 |
+
}
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi3-mini-4k-instruct-cpu-int4-rtn-block-32-acc-level-4.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:385cd1b908a0d2f8634e86d30236f6dbb7ae660eb3943fd1ef5bdc3847326480
|
3 |
+
size 231335
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi3-mini-4k-instruct-cpu-int4-rtn-block-32-acc-level-4.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5db30ce699aee1123cf9045742488db5928006fa618a42cb3c0840322a85ad0f
|
3 |
+
size 2722861056
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|endoftext|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer_config.json
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": true,
|
26 |
+
"single_word": false,
|
27 |
+
"special": false
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "<|endoftext|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"32001": {
|
38 |
+
"content": "<|assistant|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": true,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"32002": {
|
46 |
+
"content": "<|placeholder1|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": true,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"32003": {
|
54 |
+
"content": "<|placeholder2|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": true,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"32004": {
|
62 |
+
"content": "<|placeholder3|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": true,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"32005": {
|
70 |
+
"content": "<|placeholder4|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": true,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"32006": {
|
78 |
+
"content": "<|system|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": true,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"32007": {
|
86 |
+
"content": "<|end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": true,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"32008": {
|
94 |
+
"content": "<|placeholder5|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": true,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"32009": {
|
102 |
+
"content": "<|placeholder6|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": true,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"32010": {
|
110 |
+
"content": "<|user|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": true,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
}
|
117 |
+
},
|
118 |
+
"bos_token": "<s>",
|
119 |
+
"chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
|
120 |
+
"clean_up_tokenization_spaces": false,
|
121 |
+
"eos_token": "<|endoftext|>",
|
122 |
+
"legacy": false,
|
123 |
+
"model_max_length": 4096,
|
124 |
+
"pad_token": "<|endoftext|>",
|
125 |
+
"padding_side": "left",
|
126 |
+
"sp_model_kwargs": {},
|
127 |
+
"tokenizer_class": "LlamaTokenizer",
|
128 |
+
"unk_token": "<unk>",
|
129 |
+
"use_default_system_prompt": false
|
130 |
+
}
|
pre_processing.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
import numpy as np
|
3 |
+
import faiss
|
4 |
+
|
5 |
+
|
6 |
+
check_point = 'nomic-ai/nomic-embed-text-v1'
|
7 |
+
embedding_model = SentenceTransformer(check_point,trust_remote_code=True)
|
8 |
+
|
9 |
+
def parese_doc(doc,first_section,ignore_after):
|
10 |
+
documents_1 = ''
|
11 |
+
|
12 |
+
reader = doc
|
13 |
+
for page in reader.pages:
|
14 |
+
documents_1 += page.extract_text()
|
15 |
+
|
16 |
+
cleaned_string = documents_1.replace('\n', ' ')
|
17 |
+
cleaned_string = cleaned_string.lower()
|
18 |
+
|
19 |
+
start_index = cleaned_string.find(first_section)
|
20 |
+
end_index = cleaned_string.rfind(ignore_after)
|
21 |
+
if start_index!=-1 and end_index!=-1:
|
22 |
+
cleaned_string = cleaned_string[start_index:end_index]
|
23 |
+
|
24 |
+
sentence_list = cleaned_string.split('. ')
|
25 |
+
context_list = []
|
26 |
+
group_size = 20
|
27 |
+
overlap = 5
|
28 |
+
i = 0
|
29 |
+
while True:
|
30 |
+
group = sentence_list[i:i+group_size]
|
31 |
+
text = '. '.join(group)
|
32 |
+
context_list.append(text)
|
33 |
+
i+=group_size-overlap
|
34 |
+
if i>=len(sentence_list):
|
35 |
+
break
|
36 |
+
return context_list
|
37 |
+
|
38 |
+
def get_embeddings(doc):
|
39 |
+
model_input = doc
|
40 |
+
out = embedding_model.encode(model_input)
|
41 |
+
return out
|
42 |
+
|
43 |
+
def create_embedding(context_list):
|
44 |
+
embedding_dimension = embedding_model.get_sentence_embedding_dimension()
|
45 |
+
embeddings = list(map(get_embeddings,context_list))
|
46 |
+
embeddings_array = np.array(embeddings)
|
47 |
+
|
48 |
+
index = faiss.IndexFlatL2(embedding_dimension)
|
49 |
+
index.add(embeddings_array)
|
50 |
+
return index
|
51 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
faiss-cpu==1.8.0
|
2 |
+
sentence-transformers==2.7.0
|
3 |
+
einops==0.8.0
|
4 |
+
pypdf==4.2.0
|
5 |
+
gradio==4.29.0
|
6 |
+
numpy
|
7 |
+
onnxruntime-genai --pre
|