Spaces:
Running
on
Zero
Running
on
Zero
raoyonghui
commited on
Commit
·
f7428c0
1
Parent(s):
a8db66d
init whisper model when inference
Browse files
app.py
CHANGED
@@ -18,17 +18,23 @@ from utils.util import load_config
|
|
18 |
from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p
|
19 |
|
20 |
from transformers import SeamlessM4TFeatureExtractor
|
|
|
21 |
|
22 |
-
import whisper
|
23 |
|
24 |
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
25 |
-
|
26 |
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
27 |
-
whisper_model =
|
|
|
|
|
|
|
|
|
28 |
|
29 |
def detect_speech_language(speech_file):
|
|
|
|
|
|
|
|
|
30 |
# load audio and pad/trim it to fit 30 seconds
|
31 |
-
whisper_model = whisper.load_model("turbo")
|
32 |
audio = whisper.load_audio(speech_file)
|
33 |
audio = whisper.pad_or_trim(audio)
|
34 |
|
@@ -46,6 +52,10 @@ def get_prompt_text(speech_16k, language):
|
|
46 |
shot_prompt_text = ""
|
47 |
short_prompt_end_ts = 0.0
|
48 |
|
|
|
|
|
|
|
|
|
49 |
asr_result = whisper_model.transcribe(speech_16k, language=language)
|
50 |
full_prompt_text = asr_result["text"] # whisper asr result
|
51 |
#text = asr_result["segments"][0]["text"] # whisperx asr result
|
@@ -301,7 +311,6 @@ def load_models():
|
|
301 |
def maskgct_inference(
|
302 |
prompt_speech_path,
|
303 |
target_text,
|
304 |
-
target_language="en",
|
305 |
target_len=None,
|
306 |
n_timesteps=25,
|
307 |
cfg=2.5,
|
@@ -320,6 +329,8 @@ def maskgct_inference(
|
|
320 |
# use the first 4+ seconds wav as the prompt in case the prompt wav is too long
|
321 |
speech = speech[0: int(shot_prompt_end_ts * 24000)]
|
322 |
speech_16k = speech_16k[0: int(shot_prompt_end_ts*16000)]
|
|
|
|
|
323 |
combine_semantic_code, _ = text2semantic(
|
324 |
device,
|
325 |
speech_16k,
|
@@ -351,19 +362,19 @@ def inference(
|
|
351 |
target_text,
|
352 |
target_len,
|
353 |
n_timesteps,
|
354 |
-
target_language,
|
355 |
):
|
356 |
-
|
|
|
357 |
os.makedirs("./output", exist_ok=True)
|
358 |
recovered_audio = maskgct_inference(
|
359 |
prompt_wav,
|
360 |
target_text,
|
361 |
-
target_language,
|
362 |
target_len=target_len,
|
363 |
n_timesteps=int(n_timesteps),
|
364 |
device=device,
|
365 |
)
|
366 |
sf.write(save_path, recovered_audio, 24000)
|
|
|
367 |
return save_path
|
368 |
|
369 |
# Load models once
|
@@ -394,7 +405,6 @@ iface = gr.Interface(
|
|
394 |
gr.Slider(
|
395 |
label="Number of Timesteps", minimum=15, maximum=100, value=25, step=1
|
396 |
),
|
397 |
-
gr.Dropdown(label="Target Language", choices=language_list, value="en"),
|
398 |
],
|
399 |
outputs=gr.Audio(label="Generated Audio"),
|
400 |
title="MaskGCT TTS Demo",
|
|
|
18 |
from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p
|
19 |
|
20 |
from transformers import SeamlessM4TFeatureExtractor
|
21 |
+
import py3langid as langid
|
22 |
|
|
|
23 |
|
24 |
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
|
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
26 |
+
whisper_model = None
|
27 |
+
output_file_name_idx = 0
|
28 |
+
|
29 |
+
def detect_text_language(text):
|
30 |
+
return langid.classify(text)[0]
|
31 |
|
32 |
def detect_speech_language(speech_file):
|
33 |
+
import whisper
|
34 |
+
global whisper_model
|
35 |
+
if whisper_model == None:
|
36 |
+
whisper_model = whisper.load_model("turbo")
|
37 |
# load audio and pad/trim it to fit 30 seconds
|
|
|
38 |
audio = whisper.load_audio(speech_file)
|
39 |
audio = whisper.pad_or_trim(audio)
|
40 |
|
|
|
52 |
shot_prompt_text = ""
|
53 |
short_prompt_end_ts = 0.0
|
54 |
|
55 |
+
import whisper
|
56 |
+
global whisper_model
|
57 |
+
if whisper_model == None:
|
58 |
+
whisper_model = whisper.load_model("turbo")
|
59 |
asr_result = whisper_model.transcribe(speech_16k, language=language)
|
60 |
full_prompt_text = asr_result["text"] # whisper asr result
|
61 |
#text = asr_result["segments"][0]["text"] # whisperx asr result
|
|
|
311 |
def maskgct_inference(
|
312 |
prompt_speech_path,
|
313 |
target_text,
|
|
|
314 |
target_len=None,
|
315 |
n_timesteps=25,
|
316 |
cfg=2.5,
|
|
|
329 |
# use the first 4+ seconds wav as the prompt in case the prompt wav is too long
|
330 |
speech = speech[0: int(shot_prompt_end_ts * 24000)]
|
331 |
speech_16k = speech_16k[0: int(shot_prompt_end_ts*16000)]
|
332 |
+
|
333 |
+
target_language = detect_text_language(target_text)
|
334 |
combine_semantic_code, _ = text2semantic(
|
335 |
device,
|
336 |
speech_16k,
|
|
|
362 |
target_text,
|
363 |
target_len,
|
364 |
n_timesteps,
|
|
|
365 |
):
|
366 |
+
global output_file_name_idx
|
367 |
+
save_path = f"./output/output_{output_file_name_idx}.wav"
|
368 |
os.makedirs("./output", exist_ok=True)
|
369 |
recovered_audio = maskgct_inference(
|
370 |
prompt_wav,
|
371 |
target_text,
|
|
|
372 |
target_len=target_len,
|
373 |
n_timesteps=int(n_timesteps),
|
374 |
device=device,
|
375 |
)
|
376 |
sf.write(save_path, recovered_audio, 24000)
|
377 |
+
output_file_name_idx = (output_file_name_idx + 1) % 10
|
378 |
return save_path
|
379 |
|
380 |
# Load models once
|
|
|
405 |
gr.Slider(
|
406 |
label="Number of Timesteps", minimum=15, maximum=100, value=25, step=1
|
407 |
),
|
|
|
408 |
],
|
409 |
outputs=gr.Audio(label="Generated Audio"),
|
410 |
title="MaskGCT TTS Demo",
|