|
import torch.nn.functional as F |
|
|
|
|
|
class InputPadder: |
|
""" Pads images such that dimensions are divisible by divisor """ |
|
|
|
def __init__(self, dims, divisor=16): |
|
self.ht, self.wd = dims[-2:] |
|
pad_ht = (((self.ht // divisor) + 1) * divisor - self.ht) % divisor |
|
pad_wd = (((self.wd // divisor) + 1) * divisor - self.wd) % divisor |
|
self._pad = [pad_wd // 2, pad_wd - pad_wd // 2, pad_ht // 2, pad_ht - pad_ht // 2] |
|
|
|
def pad(self, *inputs): |
|
if len(inputs) == 1: |
|
return F.pad(inputs[0], self._pad, mode='replicate') |
|
else: |
|
return [F.pad(x, self._pad, mode='replicate') for x in inputs] |
|
|
|
def unpad(self, *inputs): |
|
if len(inputs) == 1: |
|
return self._unpad(inputs[0]) |
|
else: |
|
return [self._unpad(x) for x in inputs] |
|
|
|
def _unpad(self, x): |
|
ht, wd = x.shape[-2:] |
|
c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]] |
|
return x[..., c[0]:c[1], c[2]:c[3]] |
|
|