Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from lang_sam import LangSAM
|
@@ -8,9 +8,14 @@ from color_matcher.normalizer import Normalizer
|
|
8 |
import torch
|
9 |
|
10 |
# Load the LangSAM model
|
11 |
-
model = LangSAM() # Use the default model or specify custom checkpoint
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Function to apply color matching based on reference image
|
14 |
def apply_color_matching(source_img_np, ref_img_np):
|
15 |
# Initialize ColorMatcher
|
16 |
cm = ColorMatcher()
|
@@ -23,60 +28,129 @@ def apply_color_matching(source_img_np, ref_img_np):
|
|
23 |
|
24 |
return img_res
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
# Ensure masks is converted from tensor to NumPy
|
32 |
-
masks_np = masks[0].cpu().numpy() # Convert the tensor to NumPy array
|
33 |
-
|
34 |
-
# Convert the mask to a binary format and create a mask image
|
35 |
-
sky_mask = (masks_np > 0).astype(np.uint8) * 255 # Ensure it's a binary mask
|
36 |
|
37 |
-
#
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
|
43 |
-
#
|
44 |
-
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
|
|
|
|
48 |
|
49 |
-
#
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
#
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
# Convert
|
56 |
-
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
# Gradio function to be called on input
|
63 |
-
def process_image(source_img, ref_img):
|
64 |
-
# Extract sky and apply color matching using reference image
|
65 |
-
result_img_pil = extract_and_color_match_sky(source_img, ref_img)
|
66 |
-
return result_img_pil
|
67 |
-
|
68 |
-
# Define Gradio input components
|
69 |
-
inputs = [
|
70 |
-
gr.Image(type="pil", label="Source Image"),
|
71 |
-
gr.Image(type="pil", label="Reference Image") # Second input for reference image
|
72 |
-
]
|
73 |
-
|
74 |
-
# Define Gradio output component
|
75 |
-
outputs = gr.Image(type="pil", label="Resulting Image")
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
# Run the Gradio Interface
|
81 |
if __name__ == "__main__":
|
82 |
gradio_interface()
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
from lang_sam import LangSAM
|
|
|
8 |
import torch
|
9 |
|
10 |
# Load the LangSAM model
|
11 |
+
model = LangSAM() # Use the default model or specify custom checkpoint if necessary
|
12 |
+
|
13 |
+
def extract_mask(image_pil, text_prompt):
|
14 |
+
masks, boxes, phrases, logits = model.predict(image_pil, text_prompt)
|
15 |
+
masks_np = masks[0].cpu().numpy()
|
16 |
+
mask = (masks_np > 0).astype(np.uint8) * 255 # Binary mask
|
17 |
+
return mask
|
18 |
|
|
|
19 |
def apply_color_matching(source_img_np, ref_img_np):
|
20 |
# Initialize ColorMatcher
|
21 |
cm = ColorMatcher()
|
|
|
28 |
|
29 |
return img_res
|
30 |
|
31 |
+
def process_image(current_image_pil, prompt, replacement_image_pil, color_ref_image_pil, image_history):
|
32 |
+
# Check if current_image_pil is None
|
33 |
+
if current_image_pil is None:
|
34 |
+
return None, "No current image to edit.", image_history, None
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Save current image to history for undo
|
37 |
+
if image_history is None:
|
38 |
+
image_history = []
|
39 |
+
image_history.append(current_image_pil.copy())
|
40 |
|
41 |
+
# Extract mask
|
42 |
+
mask = extract_mask(current_image_pil, prompt)
|
43 |
|
44 |
+
# Check if mask is valid
|
45 |
+
if mask.sum() == 0:
|
46 |
+
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
|
47 |
|
48 |
+
# Proceed with replacement or color matching
|
49 |
+
current_image_np = np.array(current_image_pil)
|
50 |
+
mask_3ch = cv2.merge([mask, mask, mask])
|
51 |
+
result_image_np = current_image_np.copy()
|
52 |
|
53 |
+
# If replacement image is provided
|
54 |
+
if replacement_image_pil is not None:
|
55 |
+
# Resize replacement image to fit the mask area
|
56 |
+
# Get bounding box of the mask
|
57 |
+
y_indices, x_indices = np.where(mask > 0)
|
58 |
+
if y_indices.size == 0 or x_indices.size == 0:
|
59 |
+
# No mask detected
|
60 |
+
return current_image_pil, f"No mask detected for prompt: {prompt}", image_history, current_image_pil
|
61 |
+
y_min, y_max = y_indices.min(), y_indices.max()
|
62 |
+
x_min, x_max = x_indices.min(), x_indices.max()
|
63 |
+
|
64 |
+
# Extract the region of interest
|
65 |
+
mask_height = y_max - y_min + 1
|
66 |
+
mask_width = x_max - x_min + 1
|
67 |
+
|
68 |
+
# Resize replacement image to fit mask area
|
69 |
+
replacement_image_resized = replacement_image_pil.resize((mask_width, mask_height))
|
70 |
+
replacement_image_np = np.array(replacement_image_resized)
|
71 |
+
|
72 |
+
# Create a mask for the ROI
|
73 |
+
mask_roi = mask[y_min:y_max+1, x_min:x_max+1]
|
74 |
+
mask_roi_3ch = cv2.merge([mask_roi, mask_roi, mask_roi])
|
75 |
+
|
76 |
+
# Replace the masked area with the replacement image
|
77 |
+
result_image_np[y_min:y_max+1, x_min:x_max+1] = np.where(mask_roi_3ch > 0, replacement_image_np, result_image_np[y_min:y_max+1, x_min:x_max+1])
|
78 |
|
79 |
+
# If color reference image is provided
|
80 |
+
if color_ref_image_pil is not None:
|
81 |
+
# Extract the masked area
|
82 |
+
masked_region = cv2.bitwise_and(result_image_np, mask_3ch)
|
83 |
+
# Convert color reference image to numpy
|
84 |
+
color_ref_image_np = np.array(color_ref_image_pil)
|
85 |
+
# Apply color matching
|
86 |
+
color_matched_region = apply_color_matching(masked_region, color_ref_image_np)
|
87 |
+
# Combine the color matched region back into the result image
|
88 |
+
result_image_np = np.where(mask_3ch > 0, color_matched_region, result_image_np)
|
89 |
|
90 |
+
# Convert result back to PIL Image
|
91 |
+
result_image_pil = Image.fromarray(result_image_np)
|
92 |
|
93 |
+
# Update current_image_pil
|
94 |
+
current_image_pil = result_image_pil
|
95 |
+
|
96 |
+
return current_image_pil, f"Applied changes for prompt: {prompt}", image_history, current_image_pil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
def undo(image_history):
|
99 |
+
if image_history and len(image_history) > 1:
|
100 |
+
# Pop the last image
|
101 |
+
image_history.pop()
|
102 |
+
# Return the previous image
|
103 |
+
current_image_pil = image_history[-1]
|
104 |
+
return current_image_pil, image_history, current_image_pil
|
105 |
+
elif image_history and len(image_history) == 1:
|
106 |
+
current_image_pil = image_history[0]
|
107 |
+
return current_image_pil, image_history, current_image_pil
|
108 |
+
else:
|
109 |
+
# Cannot undo
|
110 |
+
return None, [], None
|
111 |
|
112 |
+
def gradio_interface():
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
# Define the state variables
|
115 |
+
image_history = gr.State([])
|
116 |
+
current_image_pil = gr.State(None)
|
117 |
+
|
118 |
+
gr.Markdown("## Continuous Image Editing with LangSAM")
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
initial_image = gr.Image(type="pil", label="Upload Image")
|
123 |
+
prompt = gr.Textbox(lines=1, placeholder="Enter prompt for object detection", label="Prompt")
|
124 |
+
replacement_image = gr.Image(type="pil", label="Replacement Image (optional)", optional=True)
|
125 |
+
color_ref_image = gr.Image(type="pil", label="Color Reference Image (optional)", optional=True)
|
126 |
+
apply_button = gr.Button("Apply Changes")
|
127 |
+
undo_button = gr.Button("Undo")
|
128 |
+
with gr.Column():
|
129 |
+
current_image_display = gr.Image(type="pil", label="Edited Image", interactive=False)
|
130 |
+
status = gr.Textbox(lines=2, interactive=False, label="Status")
|
131 |
+
|
132 |
+
def initialize_image(initial_image_pil):
|
133 |
+
# Initialize image history with the initial image
|
134 |
+
if initial_image_pil is not None:
|
135 |
+
image_history = [initial_image_pil]
|
136 |
+
current_image_pil = initial_image_pil
|
137 |
+
return current_image_pil, image_history, initial_image_pil
|
138 |
+
else:
|
139 |
+
return None, [], None
|
140 |
+
|
141 |
+
# When the initial image is uploaded, initialize the image history
|
142 |
+
initial_image.upload(fn=initialize_image, inputs=initial_image, outputs=[current_image_pil, image_history, current_image_display])
|
143 |
+
|
144 |
+
# Apply button click
|
145 |
+
apply_button.click(fn=process_image,
|
146 |
+
inputs=[current_image_pil, prompt, replacement_image, color_ref_image, image_history],
|
147 |
+
outputs=[current_image_pil, status, image_history, current_image_display])
|
148 |
+
|
149 |
+
# Undo button click
|
150 |
+
undo_button.click(fn=undo, inputs=image_history, outputs=[current_image_pil, image_history, current_image_display])
|
151 |
+
|
152 |
+
demo.launch(share=True)
|
153 |
+
|
154 |
# Run the Gradio Interface
|
155 |
if __name__ == "__main__":
|
156 |
gradio_interface()
|