|
import os |
|
import pandas as pd |
|
from pandasai import Agent, SmartDataframe |
|
from typing import Tuple |
|
from PIL import Image |
|
from pandasai.llm import HuggingFaceTextGen |
|
from dotenv import load_dotenv |
|
from langchain_groq.chat_models import ChatGroq |
|
|
|
load_dotenv("Groq.txt") |
|
Groq_Token = os.environ["GROQ_API_KEY"] |
|
models = {"mixtral": "mixtral-8x7b-32768", "llama": "llama2-70b-4096", "gemma": "gemma-7b-it"} |
|
|
|
hf_token = os.getenv("HF_READ") |
|
|
|
def preprocess_and_load_df(path: str) -> pd.DataFrame: |
|
df = pd.read_csv(path) |
|
df["Timestamp"] = pd.to_datetime(df["Timestamp"]) |
|
return df |
|
|
|
def load_agent(df: pd.DataFrame, context: str, inference_server: str, name="mixtral") -> Agent: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
llm = ChatGroq(model=models[name], api_key=os.getenv("GROQ_API"), temperature=0.1) |
|
|
|
agent = Agent(df, config={"llm": llm, "enable_cache": False, "options": {"wait_for_model": True}}) |
|
agent.add_message(context) |
|
return agent |
|
|
|
def load_smart_df(df: pd.DataFrame, inference_server: str, name="mixtral") -> SmartDataframe: |
|
|
|
|
|
|
|
|
|
llm = ChatGroq(model=models[name], api_key=os.getenv("GROQ_API"), temperature=0.1) |
|
df = SmartDataframe(df, config={"llm": llm, "max_retries": 5, "enable_cache": False}) |
|
return df |
|
|
|
def get_from_user(prompt): |
|
return {"role": "user", "content": prompt} |
|
|
|
def ask_agent(agent: Agent, prompt: str) -> Tuple[str, str, str]: |
|
response = agent.chat(prompt) |
|
gen_code = agent.last_code_generated |
|
ex_code = agent.last_code_executed |
|
last_prompt = agent.last_prompt |
|
return {"role": "assistant", "content": response, "gen_code": gen_code, "ex_code": ex_code, "last_prompt": last_prompt} |
|
|
|
def decorate_with_code(response: dict) -> str: |
|
return f"""<details> |
|
<summary>Generated Code</summary> |
|
|
|
```python |
|
{response["gen_code"]} |
|
``` |
|
</details> |
|
|
|
<details> |
|
<summary>Prompt</summary> |
|
|
|
{response["last_prompt"]} |
|
""" |
|
|
|
def show_response(st, response): |
|
with st.chat_message(response["role"]): |
|
try: |
|
image = Image.open(response["content"]) |
|
if "gen_code" in response: |
|
st.markdown(decorate_with_code(response), unsafe_allow_html=True) |
|
st.image(image) |
|
except Exception as e: |
|
if "gen_code" in response: |
|
display_content = decorate_with_code(response) + f"""</details> |
|
|
|
{response["content"]}""" |
|
else: |
|
display_content = response["content"] |
|
st.markdown(display_content, unsafe_allow_html=True) |
|
|
|
def ask_question(model_name, question): |
|
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1) |
|
|
|
df_check = pd.read_csv("Data.csv") |
|
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"]) |
|
df_check = df_check.head(5) |
|
|
|
new_line = "\n" |
|
|
|
template = f"""```python |
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
|
|
df = pd.read_csv("Data.csv") |
|
df["Timestamp"] = pd.to_datetime(df["Timestamp"]) |
|
|
|
# df.dtypes |
|
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))} |
|
|
|
# {question.strip()} |
|
# <your code here> |
|
``` |
|
""" |
|
|
|
query = f"""I have a pandas dataframe data of PM2.5 and PM10. |
|
* Frequency of data is daily. |
|
* `pollution` generally means `PM2.5`. |
|
* Save result in a variable `answer` and make it global. |
|
* If result is a plot, save it and save path in `answer`. Example: `answer='plot.png'` |
|
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'` |
|
|
|
Complete the following code. |
|
|
|
{template} |
|
|
|
""" |
|
|
|
answer = llm.invoke(query) |
|
code = f""" |
|
{template.split("```python")[1].split("```")[0]} |
|
{answer.content.split("```python")[1].split("```")[0]} |
|
""" |
|
|
|
exec(code) |
|
|
|
return {"role": "assistant", "content": answer.content, "gen_code": code, "ex_code": code, "last_prompt": question} |