Spaces:
Sleeping
Sleeping
Delete src/App3.py
Browse files- src/App3.py +0 -330
src/App3.py
DELETED
|
@@ -1,330 +0,0 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import re
|
| 4 |
-
import plotly.express as px
|
| 5 |
-
import plotly.graph_objects as go
|
| 6 |
-
from typing import Optional, Tuple
|
| 7 |
-
|
| 8 |
-
# ✅ MUST be the first Streamlit command
|
| 9 |
-
st.set_page_config(
|
| 10 |
-
page_title="LLM Compatibility Advisor",
|
| 11 |
-
layout="wide",
|
| 12 |
-
page_icon="🧠",
|
| 13 |
-
initial_sidebar_state="expanded"
|
| 14 |
-
)
|
| 15 |
-
|
| 16 |
-
# Enhanced data loading with error handling
|
| 17 |
-
@st.cache_data
|
| 18 |
-
def load_data():
|
| 19 |
-
try:
|
| 20 |
-
df = pd.read_excel("ICFAI.xlsx", sheet_name="Form Responses 1")
|
| 21 |
-
df.columns = df.columns.str.strip()
|
| 22 |
-
return df, None
|
| 23 |
-
except FileNotFoundError:
|
| 24 |
-
return None, "Excel file 'ICFAI.xlsx' not found. Please upload the file."
|
| 25 |
-
except Exception as e:
|
| 26 |
-
return None, f"Error loading data: {str(e)}"
|
| 27 |
-
|
| 28 |
-
# Enhanced RAM extraction with better parsing
|
| 29 |
-
def extract_numeric_ram(ram) -> Optional[int]:
|
| 30 |
-
if pd.isna(ram):
|
| 31 |
-
return None
|
| 32 |
-
|
| 33 |
-
ram_str = str(ram).lower().replace(" ", "")
|
| 34 |
-
|
| 35 |
-
# Handle various formats: "8GB", "8 GB", "8gb", "8192MB", etc.
|
| 36 |
-
gb_match = re.search(r"(\d+(?:\.\d+)?)(?:gb|g)", ram_str)
|
| 37 |
-
if gb_match:
|
| 38 |
-
return int(float(gb_match.group(1)))
|
| 39 |
-
|
| 40 |
-
# Handle MB format
|
| 41 |
-
mb_match = re.search(r"(\d+)(?:mb|m)", ram_str)
|
| 42 |
-
if mb_match:
|
| 43 |
-
return max(1, int(int(mb_match.group(1)) / 1024)) # Convert MB to GB
|
| 44 |
-
|
| 45 |
-
# Handle plain numbers (assume GB)
|
| 46 |
-
plain_match = re.search(r"(\d+)", ram_str)
|
| 47 |
-
if plain_match:
|
| 48 |
-
return int(plain_match.group(1))
|
| 49 |
-
|
| 50 |
-
return None
|
| 51 |
-
|
| 52 |
-
# Enhanced LLM recommendation with performance tiers
|
| 53 |
-
def recommend_llm(ram_str) -> Tuple[str, str, str]:
|
| 54 |
-
"""Returns (recommendation, performance_tier, additional_info)"""
|
| 55 |
-
ram = extract_numeric_ram(ram_str)
|
| 56 |
-
|
| 57 |
-
if ram is None:
|
| 58 |
-
return "⚪ Check exact specs or test with quantized models.", "Unknown", "Verify RAM specifications"
|
| 59 |
-
|
| 60 |
-
if ram <= 2:
|
| 61 |
-
return ("🔸 DistilBERT, MobileBERT, TinyBERT",
|
| 62 |
-
"Basic",
|
| 63 |
-
"Suitable for simple NLP tasks, limited context")
|
| 64 |
-
elif ram <= 4:
|
| 65 |
-
return ("🔸 MiniLM, TinyLLaMA, DistilRoBERTa",
|
| 66 |
-
"Basic",
|
| 67 |
-
"Good for text classification, basic chat")
|
| 68 |
-
elif ram <= 6:
|
| 69 |
-
return ("🟠 Phi-1.5, Alpaca.cpp (3B), Mistral Tiny",
|
| 70 |
-
"Moderate",
|
| 71 |
-
"Decent reasoning, short conversations")
|
| 72 |
-
elif ram <= 8:
|
| 73 |
-
return ("🟠 Phi-2, Gemma 2B, LLaMA 2 7B (4-bit)",
|
| 74 |
-
"Moderate",
|
| 75 |
-
"Good general purpose, coding assistance")
|
| 76 |
-
elif ram <= 12:
|
| 77 |
-
return ("🟢 LLaMA 2 7B (GGUF), Mistral 7B (int4)",
|
| 78 |
-
"Good",
|
| 79 |
-
"Strong performance, longer contexts")
|
| 80 |
-
elif ram <= 16:
|
| 81 |
-
return ("🟢 Mixtral 8x7B (4-bit), Command R+",
|
| 82 |
-
"Good",
|
| 83 |
-
"Excellent reasoning, complex tasks")
|
| 84 |
-
elif ram <= 24:
|
| 85 |
-
return ("🔵 LLaMA 2 13B, Mistral 7B FP16, Gemma 7B",
|
| 86 |
-
"High",
|
| 87 |
-
"Professional grade, high accuracy")
|
| 88 |
-
else:
|
| 89 |
-
return ("🔵 Mixtral 8x7B Full, LLaMA 2 70B (quantized)",
|
| 90 |
-
"High",
|
| 91 |
-
"Top-tier performance, enterprise ready")
|
| 92 |
-
|
| 93 |
-
# Enhanced OS detection with better icons
|
| 94 |
-
def get_os_info(os_name) -> Tuple[str, str]:
|
| 95 |
-
"""Returns (icon, clean_name)"""
|
| 96 |
-
if pd.isna(os_name):
|
| 97 |
-
return "💻", "Not specified"
|
| 98 |
-
|
| 99 |
-
os = str(os_name).lower()
|
| 100 |
-
if "windows" in os:
|
| 101 |
-
return "🪟", os_name
|
| 102 |
-
elif "mac" in os or "darwin" in os:
|
| 103 |
-
return "🍎", os_name
|
| 104 |
-
elif "linux" in os or "ubuntu" in os:
|
| 105 |
-
return "🐧", os_name
|
| 106 |
-
elif "android" in os:
|
| 107 |
-
return "🤖", os_name
|
| 108 |
-
elif "ios" in os:
|
| 109 |
-
return "📱", os_name
|
| 110 |
-
else:
|
| 111 |
-
return "💻", os_name
|
| 112 |
-
|
| 113 |
-
# Performance visualization
|
| 114 |
-
def create_performance_chart(df):
|
| 115 |
-
"""Create a performance distribution chart"""
|
| 116 |
-
laptop_rams = df["Laptop RAM"].apply(extract_numeric_ram).dropna()
|
| 117 |
-
mobile_rams = df["Mobile RAM"].apply(extract_numeric_ram).dropna()
|
| 118 |
-
|
| 119 |
-
fig = go.Figure()
|
| 120 |
-
|
| 121 |
-
fig.add_trace(go.Histogram(
|
| 122 |
-
x=laptop_rams,
|
| 123 |
-
name="Laptop RAM",
|
| 124 |
-
opacity=0.7,
|
| 125 |
-
nbinsx=10
|
| 126 |
-
))
|
| 127 |
-
|
| 128 |
-
fig.add_trace(go.Histogram(
|
| 129 |
-
x=mobile_rams,
|
| 130 |
-
name="Mobile RAM",
|
| 131 |
-
opacity=0.7,
|
| 132 |
-
nbinsx=10
|
| 133 |
-
))
|
| 134 |
-
|
| 135 |
-
fig.update_layout(
|
| 136 |
-
title="RAM Distribution Across Devices",
|
| 137 |
-
xaxis_title="RAM (GB)",
|
| 138 |
-
yaxis_title="Number of Students",
|
| 139 |
-
barmode='overlay',
|
| 140 |
-
height=400
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
return fig
|
| 144 |
-
|
| 145 |
-
# Main App
|
| 146 |
-
st.title("🧠 LLM Compatibility Advisor")
|
| 147 |
-
st.markdown("Get personalized, device-based suggestions for running LLMs efficiently!")
|
| 148 |
-
|
| 149 |
-
# Load data
|
| 150 |
-
df, error = load_data()
|
| 151 |
-
|
| 152 |
-
if error:
|
| 153 |
-
st.error(error)
|
| 154 |
-
st.info("Please ensure the Excel file 'BITS_INTERNS.xlsx' is in the same directory as this script.")
|
| 155 |
-
st.stop()
|
| 156 |
-
|
| 157 |
-
if df is None or df.empty:
|
| 158 |
-
st.error("No data found in the Excel file.")
|
| 159 |
-
st.stop()
|
| 160 |
-
|
| 161 |
-
# Sidebar filters and info
|
| 162 |
-
with st.sidebar:
|
| 163 |
-
st.header("🔍 Filters & Info")
|
| 164 |
-
|
| 165 |
-
# Performance tier filter
|
| 166 |
-
performance_filter = st.multiselect(
|
| 167 |
-
"Filter by Performance Tier:",
|
| 168 |
-
["Basic", "Moderate", "Good", "High", "Unknown"],
|
| 169 |
-
default=["Basic", "Moderate", "Good", "High", "Unknown"]
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
# RAM range filter
|
| 173 |
-
st.subheader("RAM Range Filter")
|
| 174 |
-
min_ram = st.slider("Minimum RAM (GB)", 0, 32, 0)
|
| 175 |
-
max_ram = st.slider("Maximum RAM (GB)", 0, 64, 64)
|
| 176 |
-
|
| 177 |
-
st.markdown("---")
|
| 178 |
-
st.markdown("### 📊 Quick Stats")
|
| 179 |
-
st.metric("Total Students", len(df))
|
| 180 |
-
|
| 181 |
-
# Calculate average RAM
|
| 182 |
-
avg_laptop_ram = df["Laptop RAM"].apply(extract_numeric_ram).mean()
|
| 183 |
-
avg_mobile_ram = df["Mobile RAM"].apply(extract_numeric_ram).mean()
|
| 184 |
-
|
| 185 |
-
if not pd.isna(avg_laptop_ram):
|
| 186 |
-
st.metric("Avg Laptop RAM", f"{avg_laptop_ram:.1f} GB")
|
| 187 |
-
if not pd.isna(avg_mobile_ram):
|
| 188 |
-
st.metric("Avg Mobile RAM", f"{avg_mobile_ram:.1f} GB")
|
| 189 |
-
|
| 190 |
-
# User selection with search
|
| 191 |
-
st.subheader("👤 Individual Student Analysis")
|
| 192 |
-
selected_user = st.selectbox(
|
| 193 |
-
"Choose a student:",
|
| 194 |
-
options=[""] + list(df["Full Name"].unique()),
|
| 195 |
-
format_func=lambda x: "Select a student..." if x == "" else x
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
if selected_user:
|
| 199 |
-
user_data = df[df["Full Name"] == selected_user].iloc[0]
|
| 200 |
-
|
| 201 |
-
# Enhanced user display
|
| 202 |
-
col1, col2 = st.columns(2)
|
| 203 |
-
|
| 204 |
-
with col1:
|
| 205 |
-
st.markdown("### 💻 Laptop Configuration")
|
| 206 |
-
laptop_os_icon, laptop_os_name = get_os_info(user_data.get('Laptop Operating System'))
|
| 207 |
-
laptop_ram = user_data.get('Laptop RAM', 'Not specified')
|
| 208 |
-
laptop_rec, laptop_tier, laptop_info = recommend_llm(laptop_ram)
|
| 209 |
-
|
| 210 |
-
st.markdown(f"**OS:** {laptop_os_icon} {laptop_os_name}")
|
| 211 |
-
st.markdown(f"**RAM:** {laptop_ram}")
|
| 212 |
-
st.markdown(f"**Performance Tier:** {laptop_tier}")
|
| 213 |
-
|
| 214 |
-
st.success(f"**💡 Recommendation:** {laptop_rec}")
|
| 215 |
-
st.info(f"**ℹ️ Notes:** {laptop_info}")
|
| 216 |
-
|
| 217 |
-
with col2:
|
| 218 |
-
st.markdown("### 📱 Mobile Configuration")
|
| 219 |
-
mobile_os_icon, mobile_os_name = get_os_info(user_data.get('Mobile Operating System'))
|
| 220 |
-
mobile_ram = user_data.get('Mobile RAM', 'Not specified')
|
| 221 |
-
mobile_rec, mobile_tier, mobile_info = recommend_llm(mobile_ram)
|
| 222 |
-
|
| 223 |
-
st.markdown(f"**OS:** {mobile_os_icon} {mobile_os_name}")
|
| 224 |
-
st.markdown(f"**RAM:** {mobile_ram}")
|
| 225 |
-
st.markdown(f"**Performance Tier:** {mobile_tier}")
|
| 226 |
-
|
| 227 |
-
st.success(f"**💡 Recommendation:** {mobile_rec}")
|
| 228 |
-
st.info(f"**ℹ️ Notes:** {mobile_info}")
|
| 229 |
-
|
| 230 |
-
# Batch Analysis Section
|
| 231 |
-
st.markdown("---")
|
| 232 |
-
st.header("📊 Batch Analysis & Insights")
|
| 233 |
-
|
| 234 |
-
# Create enhanced batch table
|
| 235 |
-
df_display = df[["Full Name", "Laptop RAM", "Mobile RAM"]].copy()
|
| 236 |
-
|
| 237 |
-
# Add recommendations and performance tiers
|
| 238 |
-
laptop_recommendations = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[0])
|
| 239 |
-
mobile_recommendations = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[0])
|
| 240 |
-
laptop_tiers = df["Laptop RAM"].apply(lambda x: recommend_llm(x)[1])
|
| 241 |
-
mobile_tiers = df["Mobile RAM"].apply(lambda x: recommend_llm(x)[1])
|
| 242 |
-
|
| 243 |
-
df_display["Laptop LLM"] = laptop_recommendations
|
| 244 |
-
df_display["Mobile LLM"] = mobile_recommendations
|
| 245 |
-
df_display["Laptop Tier"] = laptop_tiers
|
| 246 |
-
df_display["Mobile Tier"] = mobile_tiers
|
| 247 |
-
|
| 248 |
-
# Filter based on sidebar selections
|
| 249 |
-
laptop_ram_numeric = df["Laptop RAM"].apply(extract_numeric_ram)
|
| 250 |
-
mobile_ram_numeric = df["Mobile RAM"].apply(extract_numeric_ram)
|
| 251 |
-
|
| 252 |
-
# Apply filters
|
| 253 |
-
mask = (
|
| 254 |
-
(laptop_tiers.isin(performance_filter) | mobile_tiers.isin(performance_filter)) &
|
| 255 |
-
((laptop_ram_numeric.between(min_ram, max_ram)) | (mobile_ram_numeric.between(min_ram, max_ram)))
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
df_filtered = df_display[mask]
|
| 259 |
-
|
| 260 |
-
# Display filtered table
|
| 261 |
-
st.subheader(f"📋 Student Recommendations ({len(df_filtered)} students)")
|
| 262 |
-
st.dataframe(
|
| 263 |
-
df_filtered,
|
| 264 |
-
use_container_width=True,
|
| 265 |
-
column_config={
|
| 266 |
-
"Full Name": st.column_config.TextColumn("Student Name", width="medium"),
|
| 267 |
-
"Laptop RAM": st.column_config.TextColumn("Laptop RAM", width="small"),
|
| 268 |
-
"Mobile RAM": st.column_config.TextColumn("Mobile RAM", width="small"),
|
| 269 |
-
"Laptop LLM": st.column_config.TextColumn("Laptop Recommendation", width="large"),
|
| 270 |
-
"Mobile LLM": st.column_config.TextColumn("Mobile Recommendation", width="large"),
|
| 271 |
-
"Laptop Tier": st.column_config.TextColumn("L-Tier", width="small"),
|
| 272 |
-
"Mobile Tier": st.column_config.TextColumn("M-Tier", width="small"),
|
| 273 |
-
}
|
| 274 |
-
)
|
| 275 |
-
|
| 276 |
-
# Performance distribution chart
|
| 277 |
-
if len(df) > 1:
|
| 278 |
-
st.subheader("📈 RAM Distribution Analysis")
|
| 279 |
-
fig = create_performance_chart(df)
|
| 280 |
-
st.plotly_chart(fig, use_container_width=True)
|
| 281 |
-
|
| 282 |
-
# Performance tier summary
|
| 283 |
-
st.subheader("��� Performance Tier Summary")
|
| 284 |
-
tier_col1, tier_col2 = st.columns(2)
|
| 285 |
-
|
| 286 |
-
with tier_col1:
|
| 287 |
-
st.markdown("**Laptop Performance Tiers:**")
|
| 288 |
-
laptop_tier_counts = laptop_tiers.value_counts()
|
| 289 |
-
for tier, count in laptop_tier_counts.items():
|
| 290 |
-
percentage = (count / len(laptop_tiers)) * 100
|
| 291 |
-
st.write(f"• {tier}: {count} students ({percentage:.1f}%)")
|
| 292 |
-
|
| 293 |
-
with tier_col2:
|
| 294 |
-
st.markdown("**Mobile Performance Tiers:**")
|
| 295 |
-
mobile_tier_counts = mobile_tiers.value_counts()
|
| 296 |
-
for tier, count in mobile_tier_counts.items():
|
| 297 |
-
percentage = (count / len(mobile_tiers)) * 100
|
| 298 |
-
st.write(f"• {tier}: {count} students ({percentage:.1f}%)")
|
| 299 |
-
|
| 300 |
-
# Enhanced reference table
|
| 301 |
-
with st.expander("📘 Comprehensive LLM Reference Guide"):
|
| 302 |
-
st.markdown("""
|
| 303 |
-
## RAM-to-LLM Compatibility Matrix
|
| 304 |
-
|
| 305 |
-
| RAM Size | Performance Tier | Recommended Models | Use Cases | Additional Notes |
|
| 306 |
-
|----------|------------------|-------------------|-----------|------------------|
|
| 307 |
-
| ≤2GB | 🔸 Basic | DistilBERT, MobileBERT, TinyBERT | Simple NLP, text classification | Limited context, fast inference |
|
| 308 |
-
| 4GB | 🔸 Basic | MiniLM, TinyLLaMA, DistilRoBERTa | Basic chat, QA systems | Good for mobile deployment |
|
| 309 |
-
| 6GB | 🟠 Moderate | Phi-1.5, Alpaca.cpp (3B), Mistral Tiny | Reasoning tasks, short conversations | Balanced performance/memory |
|
| 310 |
-
| 8GB | 🟠 Moderate | Phi-2, Gemma 2B, LLaMA 2 7B (4-bit) | General purpose, coding help | Popular sweet spot |
|
| 311 |
-
| 12GB | 🟢 Good | LLaMA 2 7B (GGUF), Mistral 7B (int4) | Professional tasks, longer context | Production ready |
|
| 312 |
-
| 16GB | 🟢 Good | Mixtral 8x7B (4-bit), Command R+ | Complex reasoning, analysis | Excellent capabilities |
|
| 313 |
-
| 24GB | 🔵 High | LLaMA 2 13B, Mistral 7B FP16, Gemma 7B | High-accuracy tasks, research | Professional grade |
|
| 314 |
-
| >24GB | 🔵 High | Mixtral 8x7B Full, LLaMA 2 70B (quantized) | Enterprise applications | Top-tier performance |
|
| 315 |
-
|
| 316 |
-
### 🔧 Optimization Tips:
|
| 317 |
-
- **Quantization**: Use 4-bit or 8-bit quantization to reduce memory usage
|
| 318 |
-
- **GGUF Format**: Optimized format for CPU inference with lower memory overhead
|
| 319 |
-
- **Context Length**: Longer contexts require significantly more memory
|
| 320 |
-
- **Batch Size**: Reduce batch size for inference to save memory
|
| 321 |
-
""")
|
| 322 |
-
|
| 323 |
-
# Footer with additional resources
|
| 324 |
-
st.markdown("---")
|
| 325 |
-
st.markdown("""
|
| 326 |
-
### 🔗 Additional Resources
|
| 327 |
-
- **Quantization Tools**: GPTQ, GGML, bitsandbytes
|
| 328 |
-
- **Inference Engines**: llama.cpp, vLLM, TensorRT-LLM
|
| 329 |
-
- **Model Repositories**: Hugging Face, Ollama, LM Studio
|
| 330 |
-
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|