face-attendance / detect.py
Surya152002's picture
Upload 12 files
e26ddc0
#pytorch
import torch
from torchvision import transforms
#other lib
import sys
import numpy as np
import os
import cv2
import time
sys.path.insert(0, "yolov5_face")
from models.experimental import attempt_load
from utils.datasets import letterbox
from utils.general import check_img_size, non_max_suppression_face, scale_coords
# Check device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Get model detect
## Case 1:
# model = attempt_load("yolov5_face/yolov5s-face.pt", map_location=device)
## Case 2:
model = attempt_load("yolov5_face/yolov5n-0.5.pt", map_location=device)
# Resize image
def resize_image(img0, img_size):
h0, w0 = img0.shape[:2] # orig hw
r = img_size / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img0 = cv2.resize(img0, (int(w0 * r), int(h0 * r)), interpolation=interp)
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
img = letterbox(img0, new_shape=imgsz)[0]
# Convert
img = img[:, :, ::-1].transpose(2, 0, 1).copy() # BGR to RGB, to 3x416x416
img = torch.from_numpy(img).to(device)
img = img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
return img
def scale_coords_landmarks(img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0][0]
pad = ratio_pad[1]
coords[:, [0, 2, 4, 6, 8]] -= pad[0] # x padding
coords[:, [1, 3, 5, 7, 9]] -= pad[1] # y padding
coords[:, :10] /= gain
#clip_coords(coords, img0_shape)
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
coords[:, 4].clamp_(0, img0_shape[1]) # x3
coords[:, 5].clamp_(0, img0_shape[0]) # y3
coords[:, 6].clamp_(0, img0_shape[1]) # x4
coords[:, 7].clamp_(0, img0_shape[0]) # y4
coords[:, 8].clamp_(0, img0_shape[1]) # x5
coords[:, 9].clamp_(0, img0_shape[0]) # y5
return coords
def get_face(input_image):
# Parameters
size_convert = 128
conf_thres = 0.4
iou_thres = 0.5
# Resize image
img = resize_image(input_image.copy(), size_convert)
# Via yolov5-face
with torch.no_grad():
pred = model(img[None, :])[0]
# Apply NMS
det = non_max_suppression_face(pred, conf_thres, iou_thres)[0]
bboxs = np.int32(scale_coords(img.shape[1:], det[:, :4], input_image.shape).round().cpu().numpy())
landmarks = np.int32(scale_coords_landmarks(img.shape[1:], det[:, 5:15], input_image.shape).round().cpu().numpy())
return bboxs, landmarks
def main():
# Open camera
cap = cv2.VideoCapture(0)
start = time.time_ns()
frame_count = 0
fps = -1
# Save video
frame_width = int(cap.get(3))
frame_height = int(cap.get(4))
size = (frame_width, frame_height)
video = cv2.VideoWriter('results/face-detection.mp4',cv2.VideoWriter_fourcc(*'mp4v'), 30, size)
# Read until video is completed
while(True):
# Capture frame-by-frame
_, frame = cap.read()
# Get faces
bboxs, landmarks = get_face(frame)
h,w,c = frame.shape
tl = 1 or round(0.002 * (h + w) / 2) + 1 # line/font thickness
clors = [(255,0,0),(0,255,0),(0,0,255),(255,255,0),(0,255,255)]
# Get boxs
for i in range(len(bboxs)):
# Get location face
x1, y1, x2, y2 = bboxs[i]
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 146, 230), 2)
# Landmarks
for x in range(5):
point_x = int(landmarks[i][2 * x])
point_y = int(landmarks[i][2 * x + 1])
cv2.circle(frame, (point_x, point_y), tl+1, clors[x], -1)
# Count fps
frame_count += 1
if frame_count >= 30:
end = time.time_ns()
fps = 1e9 * frame_count / (end - start)
frame_count = 0
start = time.time_ns()
if fps > 0:
fps_label = "FPS: %.2f" % fps
cv2.putText(frame, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
#Save video
video.write(frame)
#Show result
cv2.imshow("Face Detection", frame)
# Press Q on keyboard to exit
if cv2.waitKey(25) & 0xFF == ord('q'):
break
video.release()
cap.release()
cv2.destroyAllWindows()
cv2.waitKey(0)
if __name__=="__main__":
main()