|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import torch |
|
|
|
model_id = "mistralai/Mistral-7B-v0.1" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
load_in_4bit=True |
|
) |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
def chat(prompt, history=[]): |
|
full_prompt = prompt |
|
output = pipe(full_prompt, max_new_tokens=200, do_sample=True, temperature=0.7) |
|
return output[0]["generated_text"] |
|
|
|
gr.ChatInterface( |
|
fn=chat, |
|
title="🧠 Mistral 7B Instruct Chatbot", |
|
description="This chatbot is powered by the open-source Mistral 7B LLM. Ask anything!", |
|
theme="soft" |
|
).launch() |
|
|
|
|