Spaces:
Configuration error
Configuration error
import random | |
from argparse import ArgumentParser | |
import datetime | |
from pathlib import Path | |
import imageio | |
import numpy as np | |
import torch | |
import yaml | |
from tqdm import tqdm | |
from datasets.image_dataset import SingleImageDataset | |
from models.clip_extractor import ClipExtractor | |
from models.image_model import Model | |
from util.losses import LossG | |
from util.util import tensor2im, get_optimizer | |
def train_model(config): | |
# set seed | |
seed = config["seed"] | |
if seed == -1: | |
seed = np.random.randint(2 ** 32) | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
print(f"running with seed: {seed}.") | |
# create dataset, loader | |
dataset = SingleImageDataset(config) | |
# define model | |
model = Model(config) | |
# define loss function | |
clip_extractor = ClipExtractor(config) | |
criterion = LossG(config, clip_extractor) | |
# define optimizer, scheduler | |
optimizer = get_optimizer(config, model.parameters()) | |
for epoch in tqdm(range(1, config["n_epochs"] + 1)): | |
inputs = dataset[0] | |
for key in inputs: | |
if key != "step": | |
inputs[key] = inputs[key].to(config["device"]) | |
optimizer.zero_grad() | |
outputs = model(inputs) | |
for key in inputs: | |
if key != "step": | |
inputs[key] = [inputs[key][0]] | |
losses = criterion(outputs, inputs) | |
loss_G = losses["loss"] | |
log_data = losses | |
log_data["epoch"] = epoch | |
# log current generated image to wandb | |
if epoch % config["log_images_freq"] == 0: | |
src_img = dataset.get_img().to(config["device"]) | |
with torch.no_grad(): | |
output = model.render(model.netG(src_img), bg_image=src_img) | |
for layer_name, layer_img in output.items(): | |
image_numpy_output = tensor2im(layer_img) | |
log_data[layer_name] = [wandb.Image(image_numpy_output)] if config["use_wandb"] else image_numpy_output | |
loss_G.backward() | |
optimizer.step() | |
# update learning rate | |
if config["scheduler_policy"] == "exponential": | |
optimizer.param_groups[0]["lr"] = max(config["min_lr"], config["gamma"] * optimizer.param_groups[0]["lr"]) | |
lr = optimizer.param_groups[0]["lr"] | |
log_data["lr"] = lr | |
if config["use_wandb"]: | |
wandb.log(log_data) | |
else: | |
if epoch % config["log_images_freq"] == 0: | |
save_locally(config["results_folder"], log_data) | |
def save_locally(results_folder, log_data): | |
path = Path(results_folder, str(log_data["epoch"])) | |
path.mkdir(parents=True, exist_ok=True) | |
for key in log_data.keys(): | |
if key in ["composite", "alpha", "edit_on_greenscreen", "edit"]: | |
imageio.imwrite(f"{path}/{key}.png", log_data[key]) | |
if __name__ == "__main__": | |
parser = ArgumentParser() | |
parser.add_argument( | |
"--config", | |
default="./configs/image_config.yaml", | |
help="Config path", | |
) | |
parser.add_argument( | |
"--example_config", | |
default="golden_horse.yaml", | |
help="Example config name", | |
) | |
args = parser.parse_args() | |
config_path = args.config | |
with open(config_path, "r") as f: | |
config = yaml.safe_load(f) | |
with open(f"./configs/image_example_configs/{args.example_config}", "r") as f: | |
example_config = yaml.safe_load(f) | |
config["example_config"] = args.example_config | |
config.update(example_config) | |
run_name = f"-{config['image_path'].split('/')[-1]}" | |
if config["use_wandb"]: | |
import wandb | |
wandb.init(project=config["wandb_project"], entity=config["wandb_entity"], config=config, name=run_name) | |
wandb.run.name = str(wandb.run.id) + wandb.run.name | |
config = dict(wandb.config) | |
else: | |
now = datetime.datetime.now() | |
run_name = f"{now.strftime('%Y-%m-%d_%H-%M-%S')}{run_name}" | |
path = Path(f"{config['results_folder']}/{run_name}") | |
path.mkdir(parents=True, exist_ok=True) | |
with open(path / "config.yaml", "w") as f: | |
yaml.dump(config, f) | |
config["results_folder"] = str(path) | |
train_model(config) | |
if config["use_wandb"]: | |
wandb.finish() |