SupermanxKiaski's picture
Upload 356 files
16d007c
raw
history blame
1.89 kB
import torch.nn
from models.clip_extractor import ClipExtractor
from util.losses import LossG
class AtlasLoss(torch.nn.Module):
def __init__(self, config):
super().__init__()
self.clip_extractor = ClipExtractor(config)
common_config = {
key: config[key]
for key in [
"lambda_composition",
"lambda_sparsity",
"lambda_screen",
"lambda_alpha_l1",
"lambda_alpha_l0",
"text_criterion",
"clip_model_name",
"bootstrap_epoch",
"lambda_bootstrap",
"relevancy_num_layers",
"lambda_structure",
"bootstrap_text",
"bootstrap_scheduler",
"bootstrapping_min_cover",
"use_negative_bootstrap",
"bootstrap_negative_text",
"bootstrap_negative_map_threshold",
"lambda_bootstrap_min",
"device",
]
}
texts_config = {
"screen_text": config["screen_text"],
"comp_text": config["comp_text"],
"src_text": config["src_text"],
}
common_config.update(texts_config)
self.loss = LossG(common_config, self.clip_extractor)
self.config = config
def forward(self, outputs, inputs):
losses = {}
if self.config["finetune_background"]:
inputs["input_crop"] = [el.squeeze(0) for el in outputs["background"]["cnn_inputs"]]
losses["background"] = self.loss(outputs["background"], inputs)
elif self.config["finetune_foreground"]:
inputs["input_crop"] = [el.squeeze(0) for el in outputs["foreground"]["cnn_inputs"]]
losses["foreground"] = self.loss(outputs["foreground"], inputs)
return losses