text2live / Text2LIVE-main /models /clip_relevancy.py
SupermanxKiaski's picture
Upload 356 files
16d007c
raw
history blame
4.12 kB
import torch
from torchvision import transforms as T
import numpy as np
from CLIP import clip_explainability as clip
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# https://github.com/hila-chefer/Transformer-MM-Explainability/blob/main/CLIP_explainability.ipynb
class ClipRelevancy(torch.nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
# TODO it would make more sense not to load ths model again (already done in the extractor)
self.model = clip.load("ViT-B/32", device=device, jit=False)[0]
clip_input_size = 224
self.preprocess = T.Compose(
[
T.Resize((clip_input_size, clip_input_size)),
T.Normalize(mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]),
]
)
input_prompts = cfg["bootstrap_text"]
if type(input_prompts) == str:
input_prompts = [input_prompts]
self.text = clip.tokenize(input_prompts).to(cfg["device"])
if self.cfg["use_negative_bootstrap"]:
input_negative_prompts = cfg["bootstrap_negative_text"]
if type(input_negative_prompts) == str:
input_negative_prompts = [input_negative_prompts]
self.bootstrap_negative_text = clip.tokenize(input_negative_prompts).to(cfg["device"])
def image_relevance(self, image_relevance):
patch_size = 32 # hardcoded for ViT-B/32 which we use
h = w = 224
image_relevance = image_relevance.reshape(1, 1, h // patch_size, w // patch_size)
image_relevance = torch.nn.functional.interpolate(image_relevance, size=(h, w), mode="bilinear")
image_relevance = image_relevance.reshape(h, w).to(device)
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
return image_relevance
def interpret(self, image, negative=False):
text = self.text if not negative else self.bootstrap_negative_text
batch_size = text.shape[0]
images = image.repeat(batch_size, 1, 1, 1)
# TODO this is pretty inefficient, we can calculate the text embeddings instead of recomputing at each call
logits_per_image, logits_per_text = self.model(images, text)
probs = logits_per_image.softmax(dim=-1).detach().cpu().numpy()
index = [i for i in range(batch_size)]
one_hot = np.zeros((logits_per_image.shape[0], logits_per_image.shape[1]), dtype=np.float32)
one_hot[torch.arange(logits_per_image.shape[0]), index] = 1
one_hot = torch.from_numpy(one_hot).requires_grad_(True)
one_hot = torch.sum(one_hot.to(device) * logits_per_image)
self.model.zero_grad()
image_attn_blocks = list(dict(self.model.visual.transformer.resblocks.named_children()).values())
num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
R = R.unsqueeze(0).expand(batch_size, num_tokens, num_tokens)
for i, blk in enumerate(image_attn_blocks):
if i <= self.cfg["relevancy_num_layers"]:
continue
grad = torch.autograd.grad(one_hot, [blk.attn_probs], retain_graph=True)[0].detach()
cam = blk.attn_probs.detach()
cam = cam.reshape(-1, cam.shape[-1], cam.shape[-1])
grad = grad.reshape(-1, grad.shape[-1], grad.shape[-1])
cam = grad * cam
cam = cam.reshape(batch_size, -1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0).mean(dim=1)
R = R + torch.bmm(cam, R)
image_relevance = R[:, 0, 1:]
return image_relevance
def forward(self, img, preprocess=True, negative=False):
if preprocess:
img = self.preprocess(img)
R_image = self.interpret(img, negative=negative)
res = []
for el in R_image:
res.append(self.image_relevance(el).float())
res = torch.stack(res, dim=0)
return res