Spaces:
Running
Running
# Uniformer | |
# From https://github.com/Sense-X/UniFormer | |
# # Apache-2.0 license | |
import os | |
from annotator.base_annotator import BaseProcessor | |
from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot | |
from annotator.uniformer.mmseg.core.evaluation import get_palette | |
checkpoint_file = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/upernet_global_small.pth" | |
class UniformerDetector(BaseProcessor): | |
def __init__(self): | |
super().__init__() | |
self.model_dir = os.path.join(self.models_path, "uniformer") | |
self.model = None | |
def load_model(self): | |
model_path = os.path.join(self.model_dir, "upernet_global_small.pth") | |
if not os.path.exists(model_path): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(checkpoint_file, model_dir=self.model_dir) | |
file_package = os.path.dirname(os.path.abspath(__file__)) | |
config_file = os.path.join(file_package, "exp", "upernet_global_small", "config.py") | |
self.model = init_segmentor(config_file, model_path, self.device).to(self.device) | |
def __call__(self, img): | |
if self.model is None: | |
self.load_model() | |
result = inference_segmentor(self.model, img) | |
res_img = show_result_pyplot(self.model, img, result, get_palette('ade'), opacity=1) | |
return res_img |