Flower-CNN / app.py
SuperSecureHuman's picture
Update app.py
03f72e6
raw
history blame
931 Bytes
import gradio as gr
#from transformers import pipeline
from tensorflow.keras.models import load_model
#pipe = pipeline(task="image-classification", model="SuperSecureHuman/Flower-CNN")
model=load_model('./model.h5')
def predict_image(img):
img_4d = img.reshape(-1,300,300,3)
prediction = model.predict(img_4d)[0]
return {class_names[i]: float(prediction[i]) for i in range(5)}
class_names = ['daisy', 'dandelion', 'roses', 'sunflowers', 'tulips']
image = gr.inputs.Image(shape=(300,300))
label = gr.outputs.Label(num_top_classes=5)
gr.Interface(fn=predict_image,
title="Flower Classification",
description="Flower CNN",
inputs = image,
outputs = label,
live=True,
interpretation='default',
allow_flagging="never").launch()