Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Functions and classes related to optimization (weight updates).""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import re | |
import tensorflow as tf | |
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu): | |
"""Creates an optimizer training op.""" | |
global_step = tf.train.get_or_create_global_step() | |
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32) | |
# Implements linear decay of the learning rate. | |
learning_rate = tf.train.polynomial_decay( | |
learning_rate, | |
global_step, | |
num_train_steps, | |
end_learning_rate=0.0, | |
power=1.0, | |
cycle=False) | |
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the | |
# learning rate will be `global_step/num_warmup_steps * init_lr`. | |
if num_warmup_steps: | |
global_steps_int = tf.cast(global_step, tf.int32) | |
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32) | |
global_steps_float = tf.cast(global_steps_int, tf.float32) | |
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32) | |
warmup_percent_done = global_steps_float / warmup_steps_float | |
warmup_learning_rate = init_lr * warmup_percent_done | |
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32) | |
learning_rate = ( | |
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate) | |
# It is recommended that you use this optimizer for fine tuning, since this | |
# is how the model was trained (note that the Adam m/v variables are NOT | |
# loaded from init_checkpoint.) | |
optimizer = AdamWeightDecayOptimizer( | |
learning_rate=learning_rate, | |
weight_decay_rate=0.01, | |
beta_1=0.9, | |
beta_2=0.999, | |
epsilon=1e-6, | |
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"]) | |
if use_tpu: | |
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer) | |
tvars = tf.trainable_variables() | |
grads = tf.gradients(loss, tvars) | |
# This is how the model was pre-trained. | |
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0) | |
train_op = optimizer.apply_gradients( | |
zip(grads, tvars), global_step=global_step) | |
new_global_step = global_step + 1 | |
train_op = tf.group(train_op, [global_step.assign(new_global_step)]) | |
return train_op | |
class AdamWeightDecayOptimizer(tf.train.Optimizer): | |
"""A basic Adam optimizer that includes "correct" L2 weight decay.""" | |
def __init__(self, | |
learning_rate, | |
weight_decay_rate=0.0, | |
beta_1=0.9, | |
beta_2=0.999, | |
epsilon=1e-6, | |
exclude_from_weight_decay=None, | |
name="AdamWeightDecayOptimizer"): | |
"""Constructs a AdamWeightDecayOptimizer.""" | |
super(AdamWeightDecayOptimizer, self).__init__(False, name) | |
self.learning_rate = learning_rate | |
self.weight_decay_rate = weight_decay_rate | |
self.beta_1 = beta_1 | |
self.beta_2 = beta_2 | |
self.epsilon = epsilon | |
self.exclude_from_weight_decay = exclude_from_weight_decay | |
def apply_gradients(self, grads_and_vars, global_step=None, name=None): | |
"""See base class.""" | |
assignments = [] | |
for (grad, param) in grads_and_vars: | |
if grad is None or param is None: | |
continue | |
param_name = self._get_variable_name(param.name) | |
m = tf.get_variable( | |
name=param_name + "/adam_m", | |
shape=param.shape.as_list(), | |
dtype=tf.float32, | |
trainable=False, | |
initializer=tf.zeros_initializer()) | |
v = tf.get_variable( | |
name=param_name + "/adam_v", | |
shape=param.shape.as_list(), | |
dtype=tf.float32, | |
trainable=False, | |
initializer=tf.zeros_initializer()) | |
# Standard Adam update. | |
next_m = ( | |
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad)) | |
next_v = ( | |
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2, | |
tf.square(grad))) | |
update = next_m / (tf.sqrt(next_v) + self.epsilon) | |
# Just adding the square of the weights to the loss function is *not* | |
# the correct way of using L2 regularization/weight decay with Adam, | |
# since that will interact with the m and v parameters in strange ways. | |
# | |
# Instead we want ot decay the weights in a manner that doesn't interact | |
# with the m/v parameters. This is equivalent to adding the square | |
# of the weights to the loss with plain (non-momentum) SGD. | |
if self._do_use_weight_decay(param_name): | |
update += self.weight_decay_rate * param | |
update_with_lr = self.learning_rate * update | |
next_param = param - update_with_lr | |
assignments.extend( | |
[param.assign(next_param), | |
m.assign(next_m), | |
v.assign(next_v)]) | |
return tf.group(*assignments, name=name) | |
def _do_use_weight_decay(self, param_name): | |
"""Whether to use L2 weight decay for `param_name`.""" | |
if not self.weight_decay_rate: | |
return False | |
if self.exclude_from_weight_decay: | |
for r in self.exclude_from_weight_decay: | |
if re.search(r, param_name) is not None: | |
return False | |
return True | |
def _get_variable_name(self, param_name): | |
"""Get the variable name from the tensor name.""" | |
m = re.match("^(.*):\\d+$", param_name) | |
if m is not None: | |
param_name = m.group(1) | |
return param_name | |