Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create sampling.py
Browse files- flux/sampling.py +161 -0
flux/sampling.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Callable
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
from torch import Tensor
|
7 |
+
|
8 |
+
from .model import Flux
|
9 |
+
from .modules.conditioner import HFEmbedder
|
10 |
+
|
11 |
+
|
12 |
+
def get_noise(
|
13 |
+
num_samples: int,
|
14 |
+
height: int,
|
15 |
+
width: int,
|
16 |
+
device: torch.device,
|
17 |
+
dtype: torch.dtype,
|
18 |
+
seed: int,
|
19 |
+
):
|
20 |
+
return torch.randn(
|
21 |
+
num_samples,
|
22 |
+
16,
|
23 |
+
# allow for packing
|
24 |
+
2 * math.ceil(height / 16),
|
25 |
+
2 * math.ceil(width / 16),
|
26 |
+
device=device,
|
27 |
+
dtype=dtype,
|
28 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str) -> dict[str, Tensor]:
|
33 |
+
bs, c, h, w = img.shape
|
34 |
+
if bs == 1 and not isinstance(prompt, str):
|
35 |
+
bs = len(prompt)
|
36 |
+
|
37 |
+
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
38 |
+
if img.shape[0] == 1 and bs > 1:
|
39 |
+
img = repeat(img, "1 ... -> bs ...", bs=bs)
|
40 |
+
|
41 |
+
img_ids = torch.zeros(h // 2, w // 2, 3)
|
42 |
+
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
|
43 |
+
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
|
44 |
+
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
45 |
+
|
46 |
+
if isinstance(prompt, str):
|
47 |
+
prompt = [prompt]
|
48 |
+
txt = t5(prompt)
|
49 |
+
if txt.shape[0] == 1 and bs > 1:
|
50 |
+
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
|
51 |
+
txt_ids = torch.zeros(bs, txt.shape[1], 3)
|
52 |
+
|
53 |
+
vec = clip(prompt)
|
54 |
+
if vec.shape[0] == 1 and bs > 1:
|
55 |
+
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
|
56 |
+
|
57 |
+
return {
|
58 |
+
"img": img,
|
59 |
+
"img_ids": img_ids.to(img.device),
|
60 |
+
"txt": txt.to(img.device),
|
61 |
+
"txt_ids": txt_ids.to(img.device),
|
62 |
+
"vec": vec.to(img.device),
|
63 |
+
}
|
64 |
+
|
65 |
+
|
66 |
+
def time_shift(mu: float, sigma: float, t: Tensor):
|
67 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
68 |
+
|
69 |
+
|
70 |
+
def get_lin_function(
|
71 |
+
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
|
72 |
+
) -> Callable[[float], float]:
|
73 |
+
m = (y2 - y1) / (x2 - x1)
|
74 |
+
b = y1 - m * x1
|
75 |
+
return lambda x: m * x + b
|
76 |
+
|
77 |
+
|
78 |
+
def get_schedule(
|
79 |
+
num_steps: int,
|
80 |
+
image_seq_len: int,
|
81 |
+
base_shift: float = 0.5,
|
82 |
+
max_shift: float = 1.15,
|
83 |
+
shift: bool = True,
|
84 |
+
) -> list[float]:
|
85 |
+
# extra step for zero
|
86 |
+
timesteps = torch.linspace(1, 0, num_steps + 1)
|
87 |
+
|
88 |
+
# shifting the schedule to favor high timesteps for higher signal images
|
89 |
+
if shift:
|
90 |
+
# eastimate mu based on linear estimation between two points
|
91 |
+
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
|
92 |
+
timesteps = time_shift(mu, 1.0, timesteps)
|
93 |
+
|
94 |
+
return timesteps.tolist()
|
95 |
+
|
96 |
+
|
97 |
+
def denoise(
|
98 |
+
model: Flux,
|
99 |
+
# model input
|
100 |
+
img: Tensor,
|
101 |
+
img_ids: Tensor,
|
102 |
+
txt: Tensor,
|
103 |
+
txt_ids: Tensor,
|
104 |
+
vec: Tensor,
|
105 |
+
timesteps: list[float],
|
106 |
+
guidance: float = 4.0,
|
107 |
+
id_weight=1.0,
|
108 |
+
id=None,
|
109 |
+
start_step=0,
|
110 |
+
uncond_id=None,
|
111 |
+
true_cfg=1.0,
|
112 |
+
timestep_to_start_cfg=1,
|
113 |
+
neg_txt=None,
|
114 |
+
neg_txt_ids=None,
|
115 |
+
neg_vec=None,
|
116 |
+
):
|
117 |
+
# this is ignored for schnell
|
118 |
+
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
|
119 |
+
use_true_cfg = abs(true_cfg - 1.0) > 1e-2
|
120 |
+
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
|
121 |
+
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
|
122 |
+
pred = model(
|
123 |
+
img=img,
|
124 |
+
img_ids=img_ids,
|
125 |
+
txt=txt,
|
126 |
+
txt_ids=txt_ids,
|
127 |
+
y=vec,
|
128 |
+
timesteps=t_vec,
|
129 |
+
guidance=guidance_vec,
|
130 |
+
id=id if i >= start_step else None,
|
131 |
+
id_weight=id_weight,
|
132 |
+
)
|
133 |
+
|
134 |
+
if use_true_cfg and i >= timestep_to_start_cfg:
|
135 |
+
neg_pred = model(
|
136 |
+
img=img,
|
137 |
+
img_ids=img_ids,
|
138 |
+
txt=neg_txt,
|
139 |
+
txt_ids=neg_txt_ids,
|
140 |
+
y=neg_vec,
|
141 |
+
timesteps=t_vec,
|
142 |
+
guidance=guidance_vec,
|
143 |
+
id=uncond_id if i >= start_step else None,
|
144 |
+
id_weight=id_weight,
|
145 |
+
)
|
146 |
+
pred = neg_pred + true_cfg * (pred - neg_pred)
|
147 |
+
|
148 |
+
img = img + (t_prev - t_curr) * pred
|
149 |
+
|
150 |
+
return img
|
151 |
+
|
152 |
+
|
153 |
+
def unpack(x: Tensor, height: int, width: int) -> Tensor:
|
154 |
+
return rearrange(
|
155 |
+
x,
|
156 |
+
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
|
157 |
+
h=math.ceil(height / 16),
|
158 |
+
w=math.ceil(width / 16),
|
159 |
+
ph=2,
|
160 |
+
pw=2,
|
161 |
+
)
|