SunderAli17 commited on
Commit
4f0a3e2
·
verified ·
1 Parent(s): af17cf5

Create timm_model.py

Browse files
Files changed (1) hide show
  1. eva_clip/timm_model.py +122 -0
eva_clip/timm_model.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ timm model adapter
2
+ Wraps timm (https://github.com/rwightman/pytorch-image-models) models for use as a vision tower in CLIP model.
3
+ """
4
+ import logging
5
+ from collections import OrderedDict
6
+
7
+ import torch
8
+ import torch.nn as nn
9
+
10
+ try:
11
+ import timm
12
+ from timm.models.layers import Mlp, to_2tuple
13
+ try:
14
+ # old timm imports < 0.8.1
15
+ from timm.models.layers.attention_pool2d import RotAttentionPool2d
16
+ from timm.models.layers.attention_pool2d import AttentionPool2d as AbsAttentionPool2d
17
+ except ImportError:
18
+ # new timm imports >= 0.8.1
19
+ from timm.layers import RotAttentionPool2d
20
+ from timm.layers import AttentionPool2d as AbsAttentionPool2d
21
+ except ImportError:
22
+ timm = None
23
+
24
+ from .utils import freeze_batch_norm_2d
25
+
26
+
27
+ class TimmModel(nn.Module):
28
+ """ timm model adapter
29
+ # FIXME this adapter is a work in progress, may change in ways that break weight compat
30
+ """
31
+
32
+ def __init__(
33
+ self,
34
+ model_name,
35
+ embed_dim,
36
+ image_size=224,
37
+ pool='avg',
38
+ proj='linear',
39
+ proj_bias=False,
40
+ drop=0.,
41
+ pretrained=False):
42
+ super().__init__()
43
+ if timm is None:
44
+ # raise RuntimeError("Please `pip install timm` to use timm models.")
45
+ return
46
+
47
+ self.image_size = to_2tuple(image_size)
48
+ self.trunk = timm.create_model(model_name, pretrained=pretrained)
49
+ feat_size = self.trunk.default_cfg.get('pool_size', None)
50
+ feature_ndim = 1 if not feat_size else 2
51
+ if pool in ('abs_attn', 'rot_attn'):
52
+ assert feature_ndim == 2
53
+ # if attn pooling used, remove both classifier and default pool
54
+ self.trunk.reset_classifier(0, global_pool='')
55
+ else:
56
+ # reset global pool if pool config set, otherwise leave as network default
57
+ reset_kwargs = dict(global_pool=pool) if pool else {}
58
+ self.trunk.reset_classifier(0, **reset_kwargs)
59
+ prev_chs = self.trunk.num_features
60
+
61
+ head_layers = OrderedDict()
62
+ if pool == 'abs_attn':
63
+ head_layers['pool'] = AbsAttentionPool2d(prev_chs, feat_size=feat_size, out_features=embed_dim)
64
+ prev_chs = embed_dim
65
+ elif pool == 'rot_attn':
66
+ head_layers['pool'] = RotAttentionPool2d(prev_chs, out_features=embed_dim)
67
+ prev_chs = embed_dim
68
+ else:
69
+ assert proj, 'projection layer needed if non-attention pooling is used.'
70
+
71
+ # NOTE attention pool ends with a projection layer, so proj should usually be set to '' if such pooling is used
72
+ if proj == 'linear':
73
+ head_layers['drop'] = nn.Dropout(drop)
74
+ head_layers['proj'] = nn.Linear(prev_chs, embed_dim, bias=proj_bias)
75
+ elif proj == 'mlp':
76
+ head_layers['mlp'] = Mlp(prev_chs, 2 * embed_dim, embed_dim, drop=drop, bias=(True, proj_bias))
77
+
78
+ self.head = nn.Sequential(head_layers)
79
+
80
+ def lock(self, unlocked_groups=0, freeze_bn_stats=False):
81
+ """ lock modules
82
+ Args:
83
+ unlocked_groups (int): leave last n layer groups unlocked (default: 0)
84
+ """
85
+ if not unlocked_groups:
86
+ # lock full model
87
+ for param in self.trunk.parameters():
88
+ param.requires_grad = False
89
+ if freeze_bn_stats:
90
+ freeze_batch_norm_2d(self.trunk)
91
+ else:
92
+ # NOTE: partial freeze requires latest timm (master) branch and is subject to change
93
+ try:
94
+ # FIXME import here until API stable and in an official release
95
+ from timm.models.helpers import group_parameters, group_modules
96
+ except ImportError:
97
+ raise RuntimeError(
98
+ 'Please install latest timm `pip install git+https://github.com/rwightman/pytorch-image-models`')
99
+ matcher = self.trunk.group_matcher()
100
+ gparams = group_parameters(self.trunk, matcher)
101
+ max_layer_id = max(gparams.keys())
102
+ max_layer_id = max_layer_id - unlocked_groups
103
+ for group_idx in range(max_layer_id + 1):
104
+ group = gparams[group_idx]
105
+ for param in group:
106
+ self.trunk.get_parameter(param).requires_grad = False
107
+ if freeze_bn_stats:
108
+ gmodules = group_modules(self.trunk, matcher, reverse=True)
109
+ gmodules = {k for k, v in gmodules.items() if v <= max_layer_id}
110
+ freeze_batch_norm_2d(self.trunk, gmodules)
111
+
112
+ @torch.jit.ignore
113
+ def set_grad_checkpointing(self, enable=True):
114
+ try:
115
+ self.trunk.set_grad_checkpointing(enable)
116
+ except Exception as e:
117
+ logging.warning('grad checkpointing not supported for this timm image tower, continuing without...')
118
+
119
+ def forward(self, x):
120
+ x = self.trunk(x)
121
+ x = self.head(x)
122
+ return x