SunderAli17 commited on
Commit
38180f1
·
verified ·
1 Parent(s): 47de9d9

Create model.py

Browse files
Files changed (1) hide show
  1. eva_clip/model.py +439 -0
eva_clip/model.py ADDED
@@ -0,0 +1,439 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ CLIP Model
2
+ Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
3
+ """
4
+ import os
5
+ from dataclasses import dataclass
6
+ from typing import Optional, Tuple, Union
7
+ from functools import partial
8
+
9
+ import numpy as np
10
+ import torch
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+
14
+ try:
15
+ from .hf_model import HFTextEncoder
16
+ except:
17
+ HFTextEncoder = None
18
+ from .modified_resnet import ModifiedResNet
19
+ # from .timm_model import TimmModel
20
+ from .eva_vit_model import EVAVisionTransformer
21
+ from .transformer import LayerNorm, QuickGELU, Attention, VisionTransformer, TextTransformer
22
+
23
+ try:
24
+ from apex.normalization import FusedLayerNorm
25
+ except:
26
+ FusedLayerNorm = LayerNorm
27
+ print("Please 'pip install apex'")
28
+
29
+ try:
30
+ import xformers.ops as xops
31
+ except ImportError:
32
+ xops = None
33
+ print("Please 'pip install xformers'")
34
+
35
+ @dataclass
36
+ class CLIPVisionCfg:
37
+ layers: Union[Tuple[int, int, int, int], int] = 12
38
+ width: int = 768
39
+ head_width: int = 64
40
+ mlp_ratio: float = 4.0
41
+ patch_size: int = 16
42
+ image_size: Union[Tuple[int, int], int] = 224
43
+ ls_init_value: Optional[float] = None # layer scale initial value
44
+ patch_dropout: float = 0. # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results
45
+ global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580)
46
+ drop_path_rate: Optional[float] = None # drop path rate
47
+ timm_model_name: str = None # a valid model name overrides layers, width, patch_size
48
+ timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model
49
+ timm_pool: str = 'avg' # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '')
50
+ timm_proj: str = 'linear' # linear projection for timm model output ('linear', 'mlp', '')
51
+ timm_proj_bias: bool = False # enable bias final projection
52
+ eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size
53
+ qkv_bias: bool = True
54
+ fusedLN: bool = False
55
+ xattn: bool = False
56
+ postnorm: bool = False
57
+ rope: bool = False
58
+ pt_hw_seq_len: int = 16 # 224/14
59
+ intp_freq: bool = False
60
+ naiveswiglu: bool = False
61
+ subln: bool = False
62
+
63
+
64
+ @dataclass
65
+ class CLIPTextCfg:
66
+ context_length: int = 77
67
+ vocab_size: int = 49408
68
+ width: int = 512
69
+ heads: int = 8
70
+ layers: int = 12
71
+ ls_init_value: Optional[float] = None # layer scale initial value
72
+ hf_model_name: str = None
73
+ hf_tokenizer_name: str = None
74
+ hf_model_pretrained: bool = True
75
+ proj: str = 'mlp'
76
+ pooler_type: str = 'mean_pooler'
77
+ masked_language_modeling: bool = False
78
+ fusedLN: bool = False
79
+ xattn: bool = False
80
+ attn_mask: bool = True
81
+
82
+ def get_cast_dtype(precision: str):
83
+ cast_dtype = None
84
+ if precision == 'bf16':
85
+ cast_dtype = torch.bfloat16
86
+ elif precision == 'fp16':
87
+ cast_dtype = torch.float16
88
+ return cast_dtype
89
+
90
+
91
+ def _build_vision_tower(
92
+ embed_dim: int,
93
+ vision_cfg: CLIPVisionCfg,
94
+ quick_gelu: bool = False,
95
+ cast_dtype: Optional[torch.dtype] = None
96
+ ):
97
+ if isinstance(vision_cfg, dict):
98
+ vision_cfg = CLIPVisionCfg(**vision_cfg)
99
+
100
+ # OpenAI models are pretrained w/ QuickGELU but native nn.GELU is both faster and more
101
+ # memory efficient in recent PyTorch releases (>= 1.10).
102
+ # NOTE: timm models always use native GELU regardless of quick_gelu flag.
103
+ act_layer = QuickGELU if quick_gelu else nn.GELU
104
+
105
+ if vision_cfg.eva_model_name:
106
+ vision_heads = vision_cfg.width // vision_cfg.head_width
107
+ norm_layer = LayerNorm
108
+
109
+ visual = EVAVisionTransformer(
110
+ img_size=vision_cfg.image_size,
111
+ patch_size=vision_cfg.patch_size,
112
+ num_classes=embed_dim,
113
+ use_mean_pooling=vision_cfg.global_average_pool, #False
114
+ init_values=vision_cfg.ls_init_value,
115
+ patch_dropout=vision_cfg.patch_dropout,
116
+ embed_dim=vision_cfg.width,
117
+ depth=vision_cfg.layers,
118
+ num_heads=vision_heads,
119
+ mlp_ratio=vision_cfg.mlp_ratio,
120
+ qkv_bias=vision_cfg.qkv_bias,
121
+ drop_path_rate=vision_cfg.drop_path_rate,
122
+ norm_layer= partial(FusedLayerNorm, eps=1e-6) if vision_cfg.fusedLN else partial(norm_layer, eps=1e-6),
123
+ xattn=vision_cfg.xattn,
124
+ rope=vision_cfg.rope,
125
+ postnorm=vision_cfg.postnorm,
126
+ pt_hw_seq_len= vision_cfg.pt_hw_seq_len, # 224/14
127
+ intp_freq= vision_cfg.intp_freq,
128
+ naiveswiglu= vision_cfg.naiveswiglu,
129
+ subln= vision_cfg.subln
130
+ )
131
+ elif vision_cfg.timm_model_name:
132
+ # visual = TimmModel(
133
+ # vision_cfg.timm_model_name,
134
+ # pretrained=vision_cfg.timm_model_pretrained,
135
+ # pool=vision_cfg.timm_pool,
136
+ # proj=vision_cfg.timm_proj,
137
+ # proj_bias=vision_cfg.timm_proj_bias,
138
+ # embed_dim=embed_dim,
139
+ # image_size=vision_cfg.image_size
140
+ # )
141
+ # act_layer = nn.GELU # so that text transformer doesn't use QuickGELU w/ timm models
142
+ raise ValueError
143
+ elif isinstance(vision_cfg.layers, (tuple, list)):
144
+ vision_heads = vision_cfg.width * 32 // vision_cfg.head_width
145
+ visual = ModifiedResNet(
146
+ layers=vision_cfg.layers,
147
+ output_dim=embed_dim,
148
+ heads=vision_heads,
149
+ image_size=vision_cfg.image_size,
150
+ width=vision_cfg.width
151
+ )
152
+ else:
153
+ vision_heads = vision_cfg.width // vision_cfg.head_width
154
+ norm_layer = LayerNormFp32 if cast_dtype in (torch.float16, torch.bfloat16) else LayerNorm
155
+ visual = VisionTransformer(
156
+ image_size=vision_cfg.image_size,
157
+ patch_size=vision_cfg.patch_size,
158
+ width=vision_cfg.width,
159
+ layers=vision_cfg.layers,
160
+ heads=vision_heads,
161
+ mlp_ratio=vision_cfg.mlp_ratio,
162
+ ls_init_value=vision_cfg.ls_init_value,
163
+ patch_dropout=vision_cfg.patch_dropout,
164
+ global_average_pool=vision_cfg.global_average_pool,
165
+ output_dim=embed_dim,
166
+ act_layer=act_layer,
167
+ norm_layer=norm_layer,
168
+ )
169
+
170
+ return visual
171
+
172
+
173
+ def _build_text_tower(
174
+ embed_dim: int,
175
+ text_cfg: CLIPTextCfg,
176
+ quick_gelu: bool = False,
177
+ cast_dtype: Optional[torch.dtype] = None,
178
+ ):
179
+ if isinstance(text_cfg, dict):
180
+ text_cfg = CLIPTextCfg(**text_cfg)
181
+
182
+ if text_cfg.hf_model_name:
183
+ text = HFTextEncoder(
184
+ text_cfg.hf_model_name,
185
+ output_dim=embed_dim,
186
+ tokenizer_name=text_cfg.hf_tokenizer_name,
187
+ proj=text_cfg.proj,
188
+ pooler_type=text_cfg.pooler_type,
189
+ masked_language_modeling=text_cfg.masked_language_modeling
190
+ )
191
+ else:
192
+ act_layer = QuickGELU if quick_gelu else nn.GELU
193
+ norm_layer = LayerNorm
194
+
195
+ text = TextTransformer(
196
+ context_length=text_cfg.context_length,
197
+ vocab_size=text_cfg.vocab_size,
198
+ width=text_cfg.width,
199
+ heads=text_cfg.heads,
200
+ layers=text_cfg.layers,
201
+ ls_init_value=text_cfg.ls_init_value,
202
+ output_dim=embed_dim,
203
+ act_layer=act_layer,
204
+ norm_layer= FusedLayerNorm if text_cfg.fusedLN else norm_layer,
205
+ xattn=text_cfg.xattn,
206
+ attn_mask=text_cfg.attn_mask,
207
+ )
208
+ return text
209
+
210
+ class CLIP(nn.Module):
211
+ def __init__(
212
+ self,
213
+ embed_dim: int,
214
+ vision_cfg: CLIPVisionCfg,
215
+ text_cfg: CLIPTextCfg,
216
+ quick_gelu: bool = False,
217
+ cast_dtype: Optional[torch.dtype] = None,
218
+ ):
219
+ super().__init__()
220
+ self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
221
+
222
+ text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
223
+ self.transformer = text.transformer
224
+ self.vocab_size = text.vocab_size
225
+ self.token_embedding = text.token_embedding
226
+ self.positional_embedding = text.positional_embedding
227
+ self.ln_final = text.ln_final
228
+ self.text_projection = text.text_projection
229
+ self.register_buffer('attn_mask', text.attn_mask, persistent=False)
230
+
231
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
232
+
233
+ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
234
+ # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
235
+ self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
236
+
237
+ @torch.jit.ignore
238
+ def set_grad_checkpointing(self, enable=True):
239
+ self.visual.set_grad_checkpointing(enable)
240
+ self.transformer.grad_checkpointing = enable
241
+
242
+ @torch.jit.ignore
243
+ def no_weight_decay(self):
244
+ return {'logit_scale'}
245
+
246
+ def encode_image(self, image, normalize: bool = False):
247
+ features = self.visual(image)
248
+ return F.normalize(features, dim=-1) if normalize else features
249
+
250
+ def encode_text(self, text, normalize: bool = False):
251
+ cast_dtype = self.transformer.get_cast_dtype()
252
+
253
+ x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
254
+
255
+ x = x + self.positional_embedding.to(cast_dtype)
256
+ x = x.permute(1, 0, 2) # NLD -> LND
257
+ x = self.transformer(x, attn_mask=self.attn_mask)
258
+ x = x.permute(1, 0, 2) # LND -> NLD
259
+ x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
260
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
261
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
262
+ return F.normalize(x, dim=-1) if normalize else x
263
+
264
+ def forward(self, image, text):
265
+ image_features = self.encode_image(image, normalize=True)
266
+ text_features = self.encode_text(text, normalize=True)
267
+ return image_features, text_features, self.logit_scale.exp()
268
+
269
+
270
+ class CustomCLIP(nn.Module):
271
+ def __init__(
272
+ self,
273
+ embed_dim: int,
274
+ vision_cfg: CLIPVisionCfg,
275
+ text_cfg: CLIPTextCfg,
276
+ quick_gelu: bool = False,
277
+ cast_dtype: Optional[torch.dtype] = None,
278
+ itm_task: bool = False,
279
+ ):
280
+ super().__init__()
281
+ self.visual = _build_vision_tower(embed_dim, vision_cfg, quick_gelu, cast_dtype)
282
+ self.text = _build_text_tower(embed_dim, text_cfg, quick_gelu, cast_dtype)
283
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
284
+
285
+ def lock_image_tower(self, unlocked_groups=0, freeze_bn_stats=False):
286
+ # lock image tower as per LiT - https://arxiv.org/abs/2111.07991
287
+ self.visual.lock(unlocked_groups=unlocked_groups, freeze_bn_stats=freeze_bn_stats)
288
+
289
+ def lock_text_tower(self, unlocked_layers:int=0, freeze_layer_norm:bool=True):
290
+ self.text.lock(unlocked_layers, freeze_layer_norm)
291
+
292
+ @torch.jit.ignore
293
+ def set_grad_checkpointing(self, enable=True):
294
+ self.visual.set_grad_checkpointing(enable)
295
+ self.text.set_grad_checkpointing(enable)
296
+
297
+ @torch.jit.ignore
298
+ def no_weight_decay(self):
299
+ return {'logit_scale'}
300
+
301
+ def encode_image(self, image, normalize: bool = False):
302
+ features = self.visual(image)
303
+ return F.normalize(features, dim=-1) if normalize else features
304
+
305
+ def encode_text(self, text, normalize: bool = False):
306
+ features = self.text(text)
307
+ return F.normalize(features, dim=-1) if normalize else features
308
+
309
+ def forward(self, image, text):
310
+ image_features = self.encode_image(image, normalize=True)
311
+ text_features = self.encode_text(text, normalize=True)
312
+ return image_features, text_features, self.logit_scale.exp()
313
+
314
+
315
+ def convert_weights_to_lp(model: nn.Module, dtype=torch.float16):
316
+ """Convert applicable model parameters to low-precision (bf16 or fp16)"""
317
+
318
+ def _convert_weights(l):
319
+
320
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
321
+ l.weight.data = l.weight.data.to(dtype)
322
+ if l.bias is not None:
323
+ l.bias.data = l.bias.data.to(dtype)
324
+
325
+ if isinstance(l, (nn.MultiheadAttention, Attention)):
326
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
327
+ tensor = getattr(l, attr, None)
328
+ if tensor is not None:
329
+ tensor.data = tensor.data.to(dtype)
330
+
331
+ if isinstance(l, nn.Parameter):
332
+ l.data = l.data.to(dtype)
333
+
334
+ for name in ["text_projection", "proj"]:
335
+ if hasattr(l, name) and isinstance(l, nn.Parameter):
336
+ attr = getattr(l, name, None)
337
+ if attr is not None:
338
+ attr.data = attr.data.to(dtype)
339
+
340
+ model.apply(_convert_weights)
341
+
342
+
343
+ convert_weights_to_fp16 = convert_weights_to_lp # backwards compat
344
+
345
+
346
+ # used to maintain checkpoint compatibility
347
+ def convert_to_custom_text_state_dict(state_dict: dict):
348
+ if 'text_projection' in state_dict:
349
+ # old format state_dict, move text tower -> .text
350
+ new_state_dict = {}
351
+ for k, v in state_dict.items():
352
+ if any(k.startswith(p) for p in (
353
+ 'text_projection',
354
+ 'positional_embedding',
355
+ 'token_embedding',
356
+ 'transformer',
357
+ 'ln_final',
358
+ 'logit_scale'
359
+ )):
360
+ k = 'text.' + k
361
+ new_state_dict[k] = v
362
+ return new_state_dict
363
+ return state_dict
364
+
365
+
366
+ def build_model_from_openai_state_dict(
367
+ state_dict: dict,
368
+ quick_gelu=True,
369
+ cast_dtype=torch.float16,
370
+ ):
371
+ vit = "visual.proj" in state_dict
372
+
373
+ if vit:
374
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
375
+ vision_layers = len(
376
+ [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
377
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
378
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
379
+ image_size = vision_patch_size * grid_size
380
+ else:
381
+ counts: list = [
382
+ len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
383
+ vision_layers = tuple(counts)
384
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
385
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
386
+ vision_patch_size = None
387
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
388
+ image_size = output_width * 32
389
+
390
+ embed_dim = state_dict["text_projection"].shape[1]
391
+ context_length = state_dict["positional_embedding"].shape[0]
392
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
393
+ transformer_width = state_dict["ln_final.weight"].shape[0]
394
+ transformer_heads = transformer_width // 64
395
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
396
+
397
+ vision_cfg = CLIPVisionCfg(
398
+ layers=vision_layers,
399
+ width=vision_width,
400
+ patch_size=vision_patch_size,
401
+ image_size=image_size,
402
+ )
403
+ text_cfg = CLIPTextCfg(
404
+ context_length=context_length,
405
+ vocab_size=vocab_size,
406
+ width=transformer_width,
407
+ heads=transformer_heads,
408
+ layers=transformer_layers
409
+ )
410
+ model = CLIP(
411
+ embed_dim,
412
+ vision_cfg=vision_cfg,
413
+ text_cfg=text_cfg,
414
+ quick_gelu=quick_gelu, # OpenAI models were trained with QuickGELU
415
+ cast_dtype=cast_dtype,
416
+ )
417
+
418
+ for key in ["input_resolution", "context_length", "vocab_size"]:
419
+ state_dict.pop(key, None)
420
+
421
+ convert_weights_to_fp16(model) # OpenAI state dicts are partially converted to float16
422
+ model.load_state_dict(state_dict)
423
+ return model.eval()
424
+
425
+
426
+ def trace_model(model, batch_size=256, device=torch.device('cpu')):
427
+ model.eval()
428
+ image_size = model.visual.image_size
429
+ example_images = torch.ones((batch_size, 3, image_size, image_size), device=device)
430
+ example_text = torch.zeros((batch_size, model.context_length), dtype=torch.int, device=device)
431
+ model = torch.jit.trace_module(
432
+ model,
433
+ inputs=dict(
434
+ forward=(example_images, example_text),
435
+ encode_text=(example_text,),
436
+ encode_image=(example_images,)
437
+ ))
438
+ model.visual.image_size = image_size
439
+ return model