Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Commit
•
111e24f
1
Parent(s):
ef4ada3
Create openai.py
Browse files- eva_clip/openai.py +141 -0
eva_clip/openai.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" OpenAI pretrained model functions
|
2 |
+
Adapted from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from .model import build_model_from_openai_state_dict, convert_weights_to_lp, get_cast_dtype
|
12 |
+
from .pretrained import get_pretrained_url, list_pretrained_models_by_tag, download_pretrained_from_url
|
13 |
+
|
14 |
+
__all__ = ["list_openai_models", "load_openai_model"]
|
15 |
+
|
16 |
+
|
17 |
+
def list_openai_models() -> List[str]:
|
18 |
+
"""Returns the names of available CLIP models"""
|
19 |
+
return list_pretrained_models_by_tag('openai')
|
20 |
+
|
21 |
+
|
22 |
+
def load_openai_model(
|
23 |
+
name: str,
|
24 |
+
precision: Optional[str] = None,
|
25 |
+
device: Optional[Union[str, torch.device]] = None,
|
26 |
+
jit: bool = True,
|
27 |
+
cache_dir: Optional[str] = None,
|
28 |
+
):
|
29 |
+
"""Load a CLIP model
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
name : str
|
33 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
34 |
+
precision: str
|
35 |
+
Model precision, if None defaults to 'fp32' if device == 'cpu' else 'fp16'.
|
36 |
+
device : Union[str, torch.device]
|
37 |
+
The device to put the loaded model
|
38 |
+
jit : bool
|
39 |
+
Whether to load the optimized JIT model (default) or more hackable non-JIT model.
|
40 |
+
cache_dir : Optional[str]
|
41 |
+
The directory to cache the downloaded model weights
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
model : torch.nn.Module
|
45 |
+
The CLIP model
|
46 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
47 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
48 |
+
"""
|
49 |
+
if device is None:
|
50 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
51 |
+
if precision is None:
|
52 |
+
precision = 'fp32' if device == 'cpu' else 'fp16'
|
53 |
+
|
54 |
+
if get_pretrained_url(name, 'openai'):
|
55 |
+
model_path = download_pretrained_from_url(get_pretrained_url(name, 'openai'), cache_dir=cache_dir)
|
56 |
+
elif os.path.isfile(name):
|
57 |
+
model_path = name
|
58 |
+
else:
|
59 |
+
raise RuntimeError(f"Model {name} not found; available models = {list_openai_models()}")
|
60 |
+
|
61 |
+
try:
|
62 |
+
# loading JIT archive
|
63 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
64 |
+
state_dict = None
|
65 |
+
except RuntimeError:
|
66 |
+
# loading saved state dict
|
67 |
+
if jit:
|
68 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
69 |
+
jit = False
|
70 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
71 |
+
|
72 |
+
if not jit:
|
73 |
+
# Build a non-jit model from the OpenAI jitted model state dict
|
74 |
+
cast_dtype = get_cast_dtype(precision)
|
75 |
+
try:
|
76 |
+
model = build_model_from_openai_state_dict(state_dict or model.state_dict(), cast_dtype=cast_dtype)
|
77 |
+
except KeyError:
|
78 |
+
sd = {k[7:]: v for k, v in state_dict["state_dict"].items()}
|
79 |
+
model = build_model_from_openai_state_dict(sd, cast_dtype=cast_dtype)
|
80 |
+
|
81 |
+
# model from OpenAI state dict is in manually cast fp16 mode, must be converted for AMP/fp32/bf16 use
|
82 |
+
model = model.to(device)
|
83 |
+
if precision.startswith('amp') or precision == 'fp32':
|
84 |
+
model.float()
|
85 |
+
elif precision == 'bf16':
|
86 |
+
convert_weights_to_lp(model, dtype=torch.bfloat16)
|
87 |
+
|
88 |
+
return model
|
89 |
+
|
90 |
+
# patch the device names
|
91 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
92 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
93 |
+
|
94 |
+
def patch_device(module):
|
95 |
+
try:
|
96 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
97 |
+
except RuntimeError:
|
98 |
+
graphs = []
|
99 |
+
|
100 |
+
if hasattr(module, "forward1"):
|
101 |
+
graphs.append(module.forward1.graph)
|
102 |
+
|
103 |
+
for graph in graphs:
|
104 |
+
for node in graph.findAllNodes("prim::Constant"):
|
105 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
106 |
+
node.copyAttributes(device_node)
|
107 |
+
|
108 |
+
model.apply(patch_device)
|
109 |
+
patch_device(model.encode_image)
|
110 |
+
patch_device(model.encode_text)
|
111 |
+
|
112 |
+
# patch dtype to float32 (typically for CPU)
|
113 |
+
if precision == 'fp32':
|
114 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
115 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
116 |
+
float_node = float_input.node()
|
117 |
+
|
118 |
+
def patch_float(module):
|
119 |
+
try:
|
120 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
121 |
+
except RuntimeError:
|
122 |
+
graphs = []
|
123 |
+
|
124 |
+
if hasattr(module, "forward1"):
|
125 |
+
graphs.append(module.forward1.graph)
|
126 |
+
|
127 |
+
for graph in graphs:
|
128 |
+
for node in graph.findAllNodes("aten::to"):
|
129 |
+
inputs = list(node.inputs())
|
130 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
131 |
+
if inputs[i].node()["value"] == 5:
|
132 |
+
inputs[i].node().copyAttributes(float_node)
|
133 |
+
|
134 |
+
model.apply(patch_float)
|
135 |
+
patch_float(model.encode_image)
|
136 |
+
patch_float(model.encode_text)
|
137 |
+
model.float()
|
138 |
+
|
139 |
+
# ensure image_size attr available at consistent location for both jit and non-jit
|
140 |
+
model.visual.image_size = model.input_resolution.item()
|
141 |
+
return model
|