Spaces:
Sleeping
Sleeping
SunderAli17
commited on
Commit
•
2f74861
1
Parent(s):
7707ac5
Create dataset.py
Browse files- data/dataset.py +202 -0
data/dataset.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
from PIL.ImageOps import exif_transpose
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
from torchvision import transforms
|
8 |
+
import json
|
9 |
+
import random
|
10 |
+
from facenet_pytorch import MTCNN
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from utils.utils import extract_faces_and_landmarks, REFERNCE_FACIAL_POINTS_RELATIVE
|
14 |
+
|
15 |
+
def load_image(image_path: str) -> Image:
|
16 |
+
image = Image.open(image_path)
|
17 |
+
image = exif_transpose(image)
|
18 |
+
if not image.mode == "RGB":
|
19 |
+
image = image.convert("RGB")
|
20 |
+
return image
|
21 |
+
|
22 |
+
|
23 |
+
class ImageDataset(Dataset):
|
24 |
+
"""
|
25 |
+
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
|
26 |
+
It pre-processes the images.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
instance_data_root,
|
32 |
+
instance_prompt,
|
33 |
+
metadata_path: Optional[str] = None,
|
34 |
+
prompt_in_filename=False,
|
35 |
+
use_only_vanilla_for_encoder=False,
|
36 |
+
concept_placeholder='a face',
|
37 |
+
size=1024,
|
38 |
+
center_crop=False,
|
39 |
+
aug_images=False,
|
40 |
+
use_only_decoder_prompts=False,
|
41 |
+
crop_head_for_encoder_image=False,
|
42 |
+
random_target_prob=0.0,
|
43 |
+
):
|
44 |
+
self.mtcnn = MTCNN(device='cuda:0')
|
45 |
+
self.mtcnn.forward = self.mtcnn.detect
|
46 |
+
resize_factor = 1.3
|
47 |
+
self.resized_reference_points = REFERNCE_FACIAL_POINTS_RELATIVE / resize_factor + (resize_factor - 1) / (2 * resize_factor)
|
48 |
+
self.size = size
|
49 |
+
self.center_crop = center_crop
|
50 |
+
self.concept_placeholder = concept_placeholder
|
51 |
+
self.prompt_in_filename = prompt_in_filename
|
52 |
+
self.aug_images = aug_images
|
53 |
+
|
54 |
+
self.instance_prompt = instance_prompt
|
55 |
+
self.custom_instance_prompts = None
|
56 |
+
self.name_to_label = None
|
57 |
+
self.crop_head_for_encoder_image = crop_head_for_encoder_image
|
58 |
+
self.random_target_prob = random_target_prob
|
59 |
+
|
60 |
+
self.use_only_decoder_prompts = use_only_decoder_prompts
|
61 |
+
|
62 |
+
self.instance_data_root = Path(instance_data_root)
|
63 |
+
|
64 |
+
if not self.instance_data_root.exists():
|
65 |
+
raise ValueError(f"Instance images root {self.instance_data_root} doesn't exist.")
|
66 |
+
|
67 |
+
if metadata_path is not None:
|
68 |
+
with open(metadata_path, 'r') as f:
|
69 |
+
self.name_to_label = json.load(f) # dict of filename: label
|
70 |
+
# Create a reversed mapping
|
71 |
+
self.label_to_names = {}
|
72 |
+
for name, label in self.name_to_label.items():
|
73 |
+
if use_only_vanilla_for_encoder and 'vanilla' not in name:
|
74 |
+
continue
|
75 |
+
if label not in self.label_to_names:
|
76 |
+
self.label_to_names[label] = []
|
77 |
+
self.label_to_names[label].append(name)
|
78 |
+
self.all_paths = [self.instance_data_root / filename for filename in self.name_to_label.keys()]
|
79 |
+
|
80 |
+
# Verify all paths exist
|
81 |
+
n_all_paths = len(self.all_paths)
|
82 |
+
self.all_paths = [path for path in self.all_paths if path.exists()]
|
83 |
+
print(f'Found {len(self.all_paths)} out of {n_all_paths} paths.')
|
84 |
+
else:
|
85 |
+
self.all_paths = [path for path in list(Path(instance_data_root).glob('**/*')) if
|
86 |
+
path.suffix.lower() in [".png", ".jpg", ".jpeg"]]
|
87 |
+
# Sort by name so that order for validation remains the same across runs
|
88 |
+
self.all_paths = sorted(self.all_paths, key=lambda x: x.stem)
|
89 |
+
|
90 |
+
self.custom_instance_prompts = None
|
91 |
+
|
92 |
+
self._length = len(self.all_paths)
|
93 |
+
|
94 |
+
self.class_data_root = None
|
95 |
+
|
96 |
+
self.image_transforms = transforms.Compose(
|
97 |
+
[
|
98 |
+
transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
|
99 |
+
transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
|
100 |
+
transforms.ToTensor(),
|
101 |
+
transforms.Normalize([0.5], [0.5]),
|
102 |
+
]
|
103 |
+
)
|
104 |
+
|
105 |
+
if self.prompt_in_filename:
|
106 |
+
self.prompts_set = set([self._path_to_prompt(path) for path in self.all_paths])
|
107 |
+
else:
|
108 |
+
self.prompts_set = set([self.instance_prompt])
|
109 |
+
|
110 |
+
if self.aug_images:
|
111 |
+
self.aug_transforms = transforms.Compose(
|
112 |
+
[
|
113 |
+
transforms.RandomResizedCrop(size, scale=(0.8, 1.0), ratio=(1.0, 1.0)),
|
114 |
+
transforms.RandomHorizontalFlip(p=0.5)
|
115 |
+
]
|
116 |
+
)
|
117 |
+
|
118 |
+
def __len__(self):
|
119 |
+
return self._length
|
120 |
+
|
121 |
+
def _path_to_prompt(self, path):
|
122 |
+
# Remove the extension and seed
|
123 |
+
split_path = path.stem.split('_')
|
124 |
+
while split_path[-1].isnumeric():
|
125 |
+
split_path = split_path[:-1]
|
126 |
+
|
127 |
+
prompt = ' '.join(split_path)
|
128 |
+
# Replace placeholder in prompt with training placeholder
|
129 |
+
prompt = prompt.replace('conceptname', self.concept_placeholder)
|
130 |
+
return prompt
|
131 |
+
|
132 |
+
def __getitem__(self, index):
|
133 |
+
example = {}
|
134 |
+
instance_path = self.all_paths[index]
|
135 |
+
instance_image = load_image(instance_path)
|
136 |
+
example["instance_images"] = self.image_transforms(instance_image)
|
137 |
+
if self.prompt_in_filename:
|
138 |
+
example["instance_prompt"] = self._path_to_prompt(instance_path)
|
139 |
+
else:
|
140 |
+
example["instance_prompt"] = self.instance_prompt
|
141 |
+
|
142 |
+
if self.name_to_label is None:
|
143 |
+
# If no labels, simply take the same image but with different augmentation
|
144 |
+
example["encoder_images"] = self.aug_transforms(example["instance_images"]) if self.aug_images else example["instance_images"]
|
145 |
+
example["encoder_prompt"] = example["instance_prompt"]
|
146 |
+
else:
|
147 |
+
# Randomly select another image with the same label
|
148 |
+
instance_name = str(instance_path.relative_to(self.instance_data_root))
|
149 |
+
instance_label = self.name_to_label[instance_name]
|
150 |
+
label_set = set(self.label_to_names[instance_label])
|
151 |
+
if len(label_set) == 1:
|
152 |
+
# We are not supposed to have only one image per label, but just in case
|
153 |
+
encoder_image_name = instance_name
|
154 |
+
print(f'WARNING: Only one image for label {instance_label}.')
|
155 |
+
else:
|
156 |
+
encoder_image_name = random.choice(list(label_set - {instance_name}))
|
157 |
+
encoder_image = load_image(self.instance_data_root / encoder_image_name)
|
158 |
+
example["encoder_images"] = self.image_transforms(encoder_image)
|
159 |
+
|
160 |
+
if self.prompt_in_filename:
|
161 |
+
example["encoder_prompt"] = self._path_to_prompt(self.instance_data_root / encoder_image_name)
|
162 |
+
else:
|
163 |
+
example["encoder_prompt"] = self.instance_prompt
|
164 |
+
|
165 |
+
if self.crop_head_for_encoder_image:
|
166 |
+
example["encoder_images"] = extract_faces_and_landmarks(example["encoder_images"][None], self.size, self.mtcnn, self.resized_reference_points)[0][0]
|
167 |
+
example["encoder_prompt"] = example["encoder_prompt"].format(placeholder="<ph>")
|
168 |
+
example["instance_prompt"] = example["instance_prompt"].format(placeholder="<s*>")
|
169 |
+
|
170 |
+
if random.random() < self.random_target_prob:
|
171 |
+
random_path = random.choice(self.all_paths)
|
172 |
+
|
173 |
+
random_image = load_image(random_path)
|
174 |
+
example["instance_images"] = self.image_transforms(random_image)
|
175 |
+
if self.prompt_in_filename:
|
176 |
+
example["instance_prompt"] = self._path_to_prompt(random_path)
|
177 |
+
|
178 |
+
|
179 |
+
if self.use_only_decoder_prompts:
|
180 |
+
example["encoder_prompt"] = example["instance_prompt"]
|
181 |
+
|
182 |
+
return example
|
183 |
+
|
184 |
+
|
185 |
+
def collate_fn(examples, with_prior_preservation=False):
|
186 |
+
pixel_values = [example["instance_images"] for example in examples]
|
187 |
+
encoder_pixel_values = [example["encoder_images"] for example in examples]
|
188 |
+
prompts = [example["instance_prompt"] for example in examples]
|
189 |
+
encoder_prompts = [example["encoder_prompt"] for example in examples]
|
190 |
+
|
191 |
+
if with_prior_preservation:
|
192 |
+
raise NotImplementedError("Prior preservation not implemented.")
|
193 |
+
|
194 |
+
pixel_values = torch.stack(pixel_values)
|
195 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
196 |
+
|
197 |
+
encoder_pixel_values = torch.stack(encoder_pixel_values)
|
198 |
+
encoder_pixel_values = encoder_pixel_values.to(memory_format=torch.contiguous_format).float()
|
199 |
+
|
200 |
+
batch = {"pixel_values": pixel_values, "encoder_pixel_values": encoder_pixel_values,
|
201 |
+
"prompts": prompts, "encoder_prompts": encoder_prompts}
|
202 |
+
return batch
|