Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat" | |
BOT_NAME = "Falcon" | |
STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] | |
EXAMPLES = [ | |
["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"], | |
["What's the Everett interpretation of quantum mechanics?"], | |
["Give me a list of the top 10 dive sites you would recommend around the world."], | |
["Can you tell me more about deep-water soloing?"], | |
["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"] | |
] | |
client = InferenceClient( | |
API_URL, | |
headers={"Authorization": f"Bearer {HF_TOKEN}"}, | |
) | |
def format_prompt(message, history, system_prompt): | |
prompt = "" | |
if system_prompt: | |
prompt += f"System: {system_prompt}\n" | |
for user_prompt, bot_response in history: | |
prompt += f"User: {user_prompt}\n" | |
prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " | |
prompt += f"""User: {message} | |
Falcon:""" | |
return prompt | |
seed = 42 | |
def generate( | |
prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
global seed | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
stop_sequences=STOP_SEQUENCES, | |
do_sample=True, | |
seed=seed, | |
) | |
seed = seed + 1 | |
formatted_prompt = format_prompt(prompt, history, system_prompt) | |
try: | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
for stop_str in STOP_SEQUENCES: | |
if output.endswith(stop_str): | |
output = output[:-len(stop_str)] | |
output = output.rstrip() | |
yield output | |
yield output | |
except Exception as e: | |
raise gr.Error(f"Error while generating: {e}") | |
return output | |
additional_inputs=[ | |
gr.Textbox("", label="Optional system prompt"), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=3000, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.01, | |
maximum=0.99, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(scale=2): | |
gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False) | |
with gr.Column(scale=5): | |
gr.Markdown( | |
"""# Falcon-180B Demo | |
**Chat with [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat), brainstorm ideas, discuss your holiday plans, and more!** | |
✨ This demo is powered by [Falcon-180B](https://huggingface.co/tiiuae/falcon-180B) and finetuned on a mixture of [Ultrachat](https://huggingface.co/datasets/stingning/ultrachat), [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) and [Airoboros](https://huggingface.co/datasets/jondurbin/airoboros-2.1). [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 3.5 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the [Falcon-180B TII License](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt). It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for a pretrained model. | |
🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon in the future, based on improved datasets and RLHF/RLAIF. | |
👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/) | |
➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions! | |
⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. | |
""" | |
) | |
gr.ChatInterface( | |
generate, | |
examples=EXAMPLES, | |
additional_inputs=additional_inputs, | |
) | |
demo.queue(api_open=False).launch(show_api=False) | |