Sumkh's picture
Update app.py
99fac9b verified
from io import StringIO
import sys
import os
# Set EasyOCR cache directory to a writable location
os.environ["EASYOCR_CACHE_DIR"] = "/app/.EASYOCR"
import easyocr
# Monkey-patch the easyocr.Reader to force the model_storage directory parameter
_original_init = easyocr.Reader.__init__
def new_init(self, *args, **kwargs):
if args and "lang_list" in kwargs:
del kwargs["lang_list"]
kwargs.setdefault("model_storage_directory", "/app/.EasyOCR")
_original_init(self, *args, **kwargs)
easyocr.Reader.__init__ = new_init
#from huggingface_hub import login
import gradio as gr
import json
import csv
import hashlib
import uuid
import logging
from typing import Annotated, List, Dict, Sequence, TypedDict
# LangChain & related imports
from langchain_core.runnables import RunnableConfig
from langchain_core.tools import tool, StructuredTool
from pydantic import BaseModel, Field
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.retrievers import EnsembleRetriever
# Extraction for Documents
from langchain_docling.loader import ExportType
from langchain_docling import DoclingLoader
from docling.chunking import HybridChunker
# Extraction for HTML
from langchain_community.document_loaders import WebBaseLoader
from urllib.parse import urlparse
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langgraph.prebuilt import InjectedStore
from langgraph.store.base import BaseStore
from langgraph.store.memory import InMemoryStore
from langgraph.checkpoint.memory import MemorySaver
from langchain.embeddings import init_embeddings
from langgraph.graph import StateGraph
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
from langchain_core.messages import (
SystemMessage,
AIMessage,
HumanMessage,
BaseMessage,
ToolMessage,
)
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Suppress all library logs at or below WARNING for user experience:
logging.disable(logging.WARNING)
# HF_TOKEN = os.getenv("HF_TOKEN") # Read from environment variable
# if HF_TOKEN:
# login(token=HF_TOKEN) # Log in to Hugging Face Hub
# else:
# print("Warning: HF_TOKEN not found in environment variables.")
GROQ_API_KEY = os.getenv("GROQ_API_KEY") # Read from environment variable
if not GROQ_API_KEY:
print("Warning: GROQ_API_KEY not found in environment variables.")
EMBED_MODEL_ID = "sentence-transformers/all-MiniLM-L6-v2"
# =============================================================================
# Document Extraction Functions
# =============================================================================
def extract_documents(doc_path: str) -> List[str]:
"""
Recursively collects all file paths from folder 'doc_path'.
Used by ExtractDocument.load_files() to find documents to parse.
"""
extracted_docs = []
for root, _, files in os.walk(doc_path):
for file in files:
file_path = os.path.join(root, file)
extracted_docs.append(file_path)
return extracted_docs
def _generate_uuid(page_content: str) -> str:
"""Generate a UUID for a chunk of text using MD5 hashing."""
md5_hash = hashlib.md5(page_content.encode()).hexdigest()
return str(uuid.UUID(md5_hash[0:32]))
def load_file(file_path: str) -> List[Document]:
"""
Load a file from the given path and return a list of Document objects.
"""
_documents = []
# Load the file and extract the text chunks
try:
loader = DoclingLoader(
file_path = file_path,
export_type = ExportType.DOC_CHUNKS,
chunker = HybridChunker(tokenizer=EMBED_MODEL_ID),
)
docs = loader.load()
logger.info(f"Total parsed doc-chunks: {len(docs)} from Source: {file_path}")
for d in docs:
# Tag each document's chunk with the source file and a unique ID
doc = Document(
page_content=d.page_content,
metadata={
"source": file_path,
"doc_id": _generate_uuid(d.page_content),
"source_type": "file",
}
)
_documents.append(doc)
logger.info(f"Total generated LangChain document chunks: {len(_documents)}\n.")
except Exception as e:
logger.error(f"Error loading file: {file_path}. Exception: {e}\n.")
return _documents
# Define function to load documents from a folder
def load_files_from_folder(doc_path: str) -> List[Document]:
"""
Load documents from the given folder path and return a list of Document objects.
"""
_documents = []
# Extract all files path from the given folder
extracted_docs = extract_documents(doc_path)
# Iterate through each document and extract the text chunks
for file_path in extracted_docs:
_documents.extend(load_file(file_path))
return _documents
# =============================================================================
# Load structured data in csv file to LangChain Document format
def load_mcq_csvfiles(file_path: str) -> List[Document]:
"""
Load structured data in mcq csv file from the given file path and return a list of Document object.
Expected format: each row of csv is comma separated into "mcq_number", "mcq_type", "text_content"
"""
_documents = []
# iterate through each csv file and load each row into _dict_per_question format
# Ensure we process only CSV files
if not file_path.endswith(".csv"):
return _documents # Skip non-CSV files
try:
# Open and read the CSV file
with open(file_path, mode='r', encoding='utf-8') as file:
reader = csv.DictReader(file)
for row in reader:
# Ensure required columns exist in the row
if not all(k in row for k in ["mcq_number", "mcq_type", "text_content"]): # Ensure required columns exist and exclude header
logger.error(f"Skipping row due to missing fields: {row}")
continue
# Tag each row of csv is comma separated into "mcq_number", "mcq_type", "text_content"
doc = Document(
page_content = row["text_content"], # text_content segment is separated by "|"
metadata={
"source": f"{file_path}_{row['mcq_number']}", # file_path + mcq_number
"doc_id": _generate_uuid(f"{file_path}_{row['mcq_number']}"), # Unique ID
"source_type": row["mcq_type"], # MCQ type
}
)
_documents.append(doc)
logger.info(f"Successfully loaded {len(_documents)} LangChain document chunks from {file_path}.")
except Exception as e:
logger.error(f"Error loading file: {file_path}. Exception: {e}\n.")
return _documents
# Define function to load documents from a folder for structured data in csv file
def load_files_from_folder_mcq(doc_path: str) -> List[Document]:
"""
Load mcq csv file from the given folder path and return a list of Document objects.
"""
_documents = []
# Extract all files path from the given folder
extracted_docs = [
os.path.join(doc_path, file) for file in os.listdir(doc_path)
if file.endswith(".csv") # Process only CSV files
]
# Iterate through each document and extract the text chunks
for file_path in extracted_docs:
_documents.extend(load_mcq_csvfiles(file_path))
return _documents
# =============================================================================
# Website Extraction Functions
# =============================================================================
def _generate_uuid(page_content: str) -> str:
"""Generate a UUID for a chunk of text using MD5 hashing."""
md5_hash = hashlib.md5(page_content.encode()).hexdigest()
return str(uuid.UUID(md5_hash[0:32]))
def ensure_scheme(url):
parsed_url = urlparse(url)
if not parsed_url.scheme:
return 'http://' + url # Default to http, or use 'https://' if preferred
return url
def extract_html(url: List[str]) -> List[Document]:
if isinstance(url, str):
url = [url]
"""
Extracts text from the HTML content of web pages listed in 'web_path'.
Returns a list of LangChain 'Document' objects.
"""
# Ensure all URLs have a scheme
web_paths = [ensure_scheme(u) for u in url]
loader = WebBaseLoader(web_paths)
loader.requests_per_second = 1
docs = loader.load()
# Iterate through each document, clean the content, removing excessive line return and store it in a LangChain Document
_documents = []
for doc in docs:
# Clean the concent
doc.page_content = doc.page_content.strip()
doc.page_content = doc.page_content.replace("\n", " ")
doc.page_content = doc.page_content.replace("\r", " ")
doc.page_content = doc.page_content.replace("\t", " ")
doc.page_content = doc.page_content.replace(" ", " ")
doc.page_content = doc.page_content.replace(" ", " ")
# Store it in a LangChain Document
web_doc = Document(
page_content=doc.page_content,
metadata={
"source": doc.metadata.get("source"),
"doc_id": _generate_uuid(doc.page_content),
"source_type": "web"
}
)
_documents.append(web_doc)
return _documents
# =============================================================================
# Vector Store Initialisation
# =============================================================================
embedding_model = HuggingFaceEmbeddings(model_name=EMBED_MODEL_ID)
# Initialise vector stores
general_vs = Chroma(
collection_name="general_vstore",
embedding_function=embedding_model,
persist_directory="./general_db"
)
mcq_vs = Chroma(
collection_name="mcq_vstore",
embedding_function=embedding_model,
persist_directory="./mcq_db"
)
in_memory_vs = Chroma(
collection_name="in_memory_vstore",
embedding_function=embedding_model
)
# Split the documents into smaller chunks for better embedding coverage
def split_text_into_chunks(docs: List[Document]) -> List[Document]:
"""
Splits a list of Documents into smaller text chunks using
RecursiveCharacterTextSplitter while preserving metadata.
Returns a list of Document objects.
"""
if not docs:
return []
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # Split into chunks of 1000 characters
chunk_overlap=200, # Overlap by 200 characters
add_start_index=True
)
chunked_docs = splitter.split_documents(docs)
return chunked_docs # List of Document objects
# =============================================================================
# Retrieval Tools
# =============================================================================
# Define a simple similarity search retrieval tool on msq_vs
class MCQRetrievalTool(BaseModel):
input: str = Field(..., title="input", description="Search topic.")
k: int = Field(2, title="Number of Results", description="The number of results to retrieve.")
def mcq_retriever(input: str, k: int = 2) -> List[str]:
# Retrieve the top k most similar mcq question documents from the vector store
docs_func = mcq_vs.as_retriever(
search_type="similarity",
search_kwargs={
'k': k,
'filter':{"source_type": "mcq_question"}
},
)
docs_qns = docs_func.invoke(input, k=k)
# Extract the document IDs from the retrieved documents
doc_ids = [d.metadata.get("doc_id") for d in docs_qns if "doc_id" in d.metadata]
# Retrieve full documents based on the doc_ids
docs = mcq_vs.get(where = {'doc_id': {"$in":doc_ids}})
qns_list = {}
for i, d in enumerate(docs['metadatas']):
qns_list[d['source'] + " " + d['source_type']] = docs['documents'][i]
return qns_list
# Create a StructuredTool from the function
mcq_retriever_tool = StructuredTool.from_function(
func = mcq_retriever,
name = "MCQ Retrieval Tool",
description = (
"""
Use this tool to retrieve MCQ questions set when Human asks to generate a quiz related to a topic.
DO NOT GIVE THE ANSWERS to Human before Human has answered all the questions.
If Human give answers for questions you do not know, SAY you do not have the questions for the answer
and ASK if the Human want you to generate a new quiz and then SAVE THE QUIZ with Summary Tool before ending the conversation.
Input must be a JSON string with the schema:
- input (str): The search topic to retrieve MCQ questions set related to the topic.
- k (int): Number of question set to retrieve.
Example usage: input='What is AI?', k=5
Returns:
- A dict of MCQ questions:
Key: 'metadata of question' e.g. './Documents/mcq/mcq.csv_Qn31 mcq_question' with suffix ['question', 'answer', 'answer_reason', 'options', 'wrong_options_reason']
Value: Text Content
"""
),
args_schema = MCQRetrievalTool,
response_format="content",
return_direct = False, # Return the response as a list of strings
verbose = False # To log tool's progress
)
# -----------------------------------------------------------------------------
# Retrieve more documents with higher diversity using MMR (Maximal Marginal Relevance) from the general vector store
# Useful if the dataset has many similar documents
class GenRetrievalTool(BaseModel):
input: str = Field(..., title="input", description="User query.")
k: int = Field(2, title="Number of Results", description="The number of results to retrieve.")
def gen_retriever(input: str, k: int = 2) -> List[str]:
# Use retriever of vector store to retrieve documents
docs_func = general_vs.as_retriever(
search_type="mmr",
search_kwargs = {'k': k, 'lambda_mult': 0.25}
)
docs = docs_func.invoke(input, k=k)
return [d.page_content for d in docs]
# Create a StructuredTool from the function
general_retriever_tool = StructuredTool.from_function(
func = gen_retriever,
name = "Assistant References Retrieval Tool",
description = (
"""
Use this tool to retrieve reference information from Assistant reference database for Human queries related to a topic or
and when Human asked to generate guides to learn or study about a topic.
Input must be a JSON string with the schema:
- input (str): The user query.
- k (int): Number of results to retrieve.
Example usage: input='What is AI?', k=5
Returns:
- A list of retrieved document's content string.
"""
),
args_schema = GenRetrievalTool,
response_format="content",
return_direct = False, # Return the content of the documents
verbose = False # To log tool's progress
)
# -----------------------------------------------------------------------------
# Retrieve more documents with higher diversity using MMR (Maximal Marginal Relevance) from the in-memory vector store
# Query in-memory vector store only
class InMemoryRetrievalTool(BaseModel):
input: str = Field(..., title="input", description="User query.")
k: int = Field(2, title="Number of Results", description="The number of results to retrieve.")
def in_memory_retriever(input: str, k: int = 2) -> List[str]:
# Use retriever of vector store to retrieve documents
docs_func = in_memory_vs.as_retriever(
search_type="mmr",
search_kwargs = {'k': k, 'lambda_mult': 0.25}
)
docs = docs_func.invoke(input, k=k)
return [d.page_content for d in docs]
# Create a StructuredTool from the function
in_memory_retriever_tool = StructuredTool.from_function(
func = in_memory_retriever,
name = "In-Memory Retrieval Tool",
description = (
"""
Use this tool when Human ask Assistant to retrieve information from documents that Human has uploaded.
Input must be a JSON string with the schema:
- input (str): The user query.
- k (int): Number of results to retrieve.
"""
),
args_schema = InMemoryRetrievalTool,
response_format="content",
return_direct = False, # Whether to return the tool’s output directly
verbose = False # To log tool's progress
)
# -----------------------------------------------------------------------------
# Web Extraction Tool
class WebExtractionRequest(BaseModel):
input: str = Field(..., title="input", description="Search text.")
url: str = Field(
...,
title="url",
description="Web URL(s) to extract content from. If multiple URLs, separate them with a comma."
)
k: int = Field(5, title="Number of Results", description="The number of results to retrieve.")
# Extract content from a web URL, load into in_memory_vstore
def extract_web_path_tool(input: str, url: str, k: int = 5) -> List[str]:
if isinstance(url, str):
url = [url]
"""
Extract content from the web URLs based on user's input.
Args:
- input: The input text to search for.
- url: URLs to extract content from.
- k: Number of results to retrieve.
Returns:
- A list of retrieved document's content string.
"""
# Extract content from the web
html_docs = extract_html(url)
if not html_docs:
return f"No content extracted from {url}."
# Split the documents into smaller chunks for better embedding coverage
chunked_texts = split_text_into_chunks(html_docs)
in_memory_vs.add_documents(chunked_texts) # Add the chunked texts to the in-memory vector store
# Extract content from the in-memory vector store
# Use retriever of vector store to retrieve documents
docs_func = in_memory_vs.as_retriever(
search_type="mmr",
search_kwargs={
'k': k,
'lambda_mult': 0.25,
'filter':{"source": {"$in": url}}
},
)
docs = docs_func.invoke(input, k=k)
return [d.page_content for d in docs]
# Create a StructuredTool from the function
web_extraction_tool = StructuredTool.from_function(
func = extract_web_path_tool,
name = "Web Extraction Tool",
description = (
"Assistant should use this tool to extract content from web URLs based on user's input, "
"Web extraction is initially load into database and then return k: Number of results to retrieve"
),
args_schema = WebExtractionRequest,
return_direct = False, # Whether to return the tool’s output directly
verbose = False # To log tool's progress
)
# -----------------------------------------------------------------------------
# Ensemble Retrieval from General and In-Memory Vector Stores
class EnsembleRetrievalTool(BaseModel):
input: str = Field(..., title="input", description="User query.")
k: int = Field(5, title="Number of Results", description="Number of results.")
def ensemble_retriever(input: str, k: int = 5) -> List[str]:
# Use retriever of vector store to retrieve documents
general_retrieval = general_vs.as_retriever(
search_type="mmr",
search_kwargs = {'k': k, 'lambda_mult': 0.25}
)
in_memory_retrieval = in_memory_vs.as_retriever(
search_type="mmr",
search_kwargs = {'k': k, 'lambda_mult': 0.25}
)
ensemble_retriever = EnsembleRetriever(
retrievers=[general_retrieval, in_memory_retrieval],
weights=[0.5, 0.5]
)
docs = ensemble_retriever.invoke(input)
return [d.page_content for d in docs]
# Create a StructuredTool from the function
ensemble_retriever_tool = StructuredTool.from_function(
func = ensemble_retriever,
name = "Ensemble Retriever Tool",
description = (
"""
Use this tool to retrieve information from reference database and
extraction of documents that Human has uploaded.
Input must be a JSON string with the schema:
- input (str): The user query.
- k (int): Number of results to retrieve.
"""
),
args_schema = EnsembleRetrievalTool,
response_format="content",
return_direct = False
)
###############################################################################
# LLM Model Setup
###############################################################################
TEMPERATURE = 0.5
# model = ChatOpenAI(
# model="unsloth/llama-3-8b-Instruct-bnb-4bit",
# temperature=TEMPERATURE,
# timeout=None,
# max_retries=2,
# api_key="not_required",
# base_url="http://localhost:8000/v1", # Use the VLLM instance URL
# verbose=True
# )
model = ChatGroq(
model_name="deepseek-r1-distill-llama-70b",
temperature=TEMPERATURE,
api_key=GROQ_API_KEY,
verbose=True
)
###############################################################################
# 1. Initialize memory + config
###############################################################################
in_memory_store = InMemoryStore(
index={
"embed": init_embeddings("huggingface:sentence-transformers/all-MiniLM-L6-v2"),
"dims": 384, # Embedding dimensions
}
)
# A memory saver to checkpoint conversation states
checkpointer = MemorySaver()
# Initialize config with user & thread info
config = {}
config["configurable"] = {
"user_id": "user_1",
"thread_id": 0,
}
###############################################################################
# 2. Define MessagesState
###############################################################################
class MessagesState(TypedDict):
"""The state of the agent.
The key 'messages' uses add_messages as a reducer,
so each time this state is updated, new messages are appended.
# See https://langchain-ai.github.io/langgraph/concepts/low_level/#reducers
"""
messages: Annotated[Sequence[BaseMessage], add_messages]
###############################################################################
# 3. Memory Tools
###############################################################################
def save_memory(summary_text: str, *, config: RunnableConfig, store: BaseStore) -> str:
"""Save the given memory for the current user and return the key."""
user_id = config.get("configurable", {}).get("user_id")
thread_id = config.get("configurable", {}).get("thread_id")
namespace = (user_id, "memories")
memory_id = thread_id
store.put(namespace, memory_id, {"memory": summary_text})
return f"Saved to memory key: {memory_id}"
def update_memory(state: MessagesState, config: RunnableConfig, *, store: BaseStore):
# Extract the messages list from the event, handling potential missing key
messages = state["messages"]
# Convert LangChain messages to dictionaries before storing
messages_dict = [{"role": msg.type, "content": msg.content} for msg in messages]
# Get the user id from the config
user_id = config.get("configurable", {}).get("user_id")
thread_id = config.get("configurable", {}).get("thread_id")
# Namespace the memory
namespace = (user_id, "memories")
# Create a new memory ID
memory_id = f"{thread_id}"
store.put(namespace, memory_id, {"memory": messages_dict})
return f"Saved to memory key: {memory_id}"
# Define a Pydantic schema for the save_memory tool (if needed elsewhere)
# https://langchain-ai.github.io/langgraphjs/reference/classes/checkpoint.InMemoryStore.html
class RecallMemory(BaseModel):
query_text: str = Field(..., title="Search Text", description="The text to search from memories for similar records.")
k: int = Field(5, title="Number of Results", description="Number of results to retrieve.")
def recall_memory(query_text: str, k: int = 5) -> str:
"""Retrieve user memories from in_memory_store."""
user_id = config.get("configurable", {}).get("user_id")
memories = [
m.value["memory"] for m in in_memory_store.search((user_id, "memories"), query=query_text, limit=k)
if "memory" in m.value
]
return f"User memories: {memories}"
# Create a StructuredTool from the function
recall_memory_tool = StructuredTool.from_function(
func=recall_memory,
name="Recall Memory Tool",
description="""
Retrieve memories relevant to the user's query.
""",
args_schema=RecallMemory,
response_format="content",
return_direct=False,
verbose=False
)
###############################################################################
# 4. Summarize Node (using StructuredTool)
###############################################################################
# Define a Pydantic schema for the Summary tool
class SummariseConversation(BaseModel):
summary_text: str = Field(..., title="text", description="Write a summary of entire conversation here")
def summarise_node(summary_text: str):
"""
Final node that summarizes the entire conversation for the current thread,
saves it in memory, increments the thread_id, and ends the conversation.
Returns a confirmation string.
"""
user_id = config["configurable"]["user_id"]
current_thread_id = config["configurable"]["thread_id"]
new_thread_id = str(int(current_thread_id) + 1)
# Prepare configuration for saving memory with updated thread id
config_for_saving = {
"configurable": {
"user_id": user_id,
"thread_id": new_thread_id
}
}
key = save_memory(summary_text, config=config_for_saving, store=in_memory_store)
#return f"Summary saved under key: {key}"
# Create a StructuredTool from the function (this wraps summarise_node)
summarise_tool = StructuredTool.from_function(
func=summarise_node,
name="Summary Tool",
description="""
Summarize the current conversation in no more than
1000 words. Also retain any unanswered quiz questions along with
your internal answers so the next conversation thread can continue.
Do not reveal solutions to the user yet. Use this tool to save
the current conversation to memory and then end the conversation.
""",
args_schema=SummariseConversation,
response_format="content",
return_direct=False,
verbose=True
)
def call_summary(state: MessagesState, config: RunnableConfig):
# Convert message dicts to HumanMessage instances if needed.
system_message="""
Summarize the current conversation in no more than
1000 words. Also retain any unanswered quiz questions along with
your internal answers.
"""
messages = []
for m in state["messages"]:
if isinstance(m, dict):
# Use role from dict (defaulting to 'user' if missing)
messages.append(AIMessage(content=system_message, role=m.get("role", "assistant")))
else:
messages.append(m)
summaries = llm_with_tools.invoke(messages)
summary_content = summaries.content
# Call Tool Manually
message_with_single_tool_call = AIMessage(
content="",
tool_calls=[
{
"name": "Summary Tool",
"args": {"summary_text": summary_content},
"id": "tool_call_id",
"type": "tool_call",
}
],
)
tool_node.invoke({"messages": [message_with_single_tool_call]})
###############################################################################
# 5. Build the Graph
###############################################################################
graph_builder = StateGraph(MessagesState)
# Use the built-in ToolNode from langgraph that calls any declared tools.
tools = [
mcq_retriever_tool,
web_extraction_tool,
ensemble_retriever_tool,
general_retriever_tool,
in_memory_retriever_tool,
recall_memory_tool,
summarise_tool,
]
tool_node = ToolNode(tools=tools)
#end_node = ToolNode(tools=[summarise_tool])
# Wrap your model with tools
llm_with_tools = model.bind_tools(tools)
###############################################################################
# 6. The agent's main node: call_model
###############################################################################
def call_model(state: MessagesState, config: RunnableConfig):
"""
The main agent node that calls the LLM with the user + system messages.
Since our vLLM chat wrapper expects a list of BaseMessage objects,
we convert any dict messages to HumanMessage objects.
If the LLM requests a tool call, we'll route to the 'tools' node next
(depending on the condition).
"""
# Convert message dicts to HumanMessage instances if needed.
messages = []
for m in state["messages"]:
if isinstance(m, dict):
# Use role from dict (defaulting to 'user' if missing)
messages.append(HumanMessage(content=m.get("content", ""), role=m.get("role", "user")))
else:
messages.append(m)
# Invoke the LLM (with tools) using the converted messages.
response = llm_with_tools.invoke(messages)
return {"messages": [response]}
def call_summary(state: MessagesState, config: RunnableConfig):
# Convert message dicts to HumanMessage instances if needed.
system_message="""
Summarize the current conversation in no more than
1000 words. Also retain any unanswered quiz questions along with
your internal answers.
"""
messages = []
for m in state["messages"]:
if isinstance(m, dict):
# Use role from dict (defaulting to 'user' if missing)
messages.append(AIMessage(content=system_message, role=m.get("role", "assistant")))
else:
messages.append(m)
summaries = llm_with_tools.invoke(messages)
summary_content = summaries.content
# Call Tool Manually
message_with_single_tool_call = AIMessage(
content="",
tool_calls=[
{
"name": "Summary Tool",
"args": {"summary_text": summary_content},
"id": "tool_call_id",
"type": "tool_call",
}
],
)
tool_node.invoke({"messages": [message_with_single_tool_call]})
###############################################################################
# 7. Add Nodes & Edges, Then Compile
###############################################################################
graph_builder.add_node("agent", call_model)
graph_builder.add_node("tools", tool_node)
#graph_builder.add_node("summary", call_summary)
# Entry point
graph_builder.set_entry_point("agent")
# def custom_tools_condition(llm_output: dict) -> str:
# """Return which node to go to next based on the LLM output."""
# # The LLM's JSON might have a field like {"name": "Recall Memory Tool", "arguments": {...}}.
# tool_name = llm_output.get("name", None)
# # If the LLM calls "Summary Tool", jump directly to the 'summary' node
# if tool_name == "Summary Tool":
# return "summary"
# # If the LLM calls any other recognized tool, go to 'tools'
# valid_tool_names = [t.name for t in tools] # all tools in the main tool_node
# if tool_name in valid_tool_names:
# return "tools"
# # If there's no recognized tool name, assume we're done => go to summary
# return "__end__"
# graph_builder.add_conditional_edges(
# "agent",
# custom_tools_condition,
# {
# "tools": "tools",
# "summary": "summary",
# "__end__": "summary",
# }
# )
# If LLM requests a tool, go to "tools", otherwise go to "summary"
graph_builder.add_conditional_edges("agent", tools_condition)
#graph_builder.add_conditional_edges("agent", tools_condition, {"tools": "tools", "__end__": "summary"})
#graph_builder.add_conditional_edges("agent", lambda llm_output: "tools" if llm_output.get("name", None) in [t.name for t in tools] else "summary", {"tools": "tools", "__end__": "summary"}
# If we used a tool, return to the agent for final answer or more tools
graph_builder.add_edge("tools", "agent")
#graph_builder.add_edge("agent", "summary")
#graph_builder.set_finish_point("summary")
# Compile the graph with checkpointing and persistent store
graph = graph_builder.compile(checkpointer=checkpointer, store=in_memory_store)
#from langgraph.prebuilt import create_react_agent
#graph = create_react_agent(llm_with_tools, tools=tool_node, checkpointer=checkpointer, store=in_memory_store)
#from IPython.display import Image, display
#display(Image(graph.get_graph().draw_mermaid_png()))
########################################
# Gradio Chatbot Application
########################################
import gradio as gr
from gradio import ChatMessage
system_prompt = "You are a helpful Assistant. You will always use the tools available to you from {tools} to address user queries."
########################################
# Upload_documents
########################################
def upload_documents(file_list: List):
"""
Load documents into in-memory vector store.
"""
_documents = []
for doc_path in file_list:
_documents.extend(load_file(doc_path))
# Split the documents into smaller chunks for better embedding coverage
splitter = RecursiveCharacterTextSplitter(
chunk_size=300, # Split into chunks of 512 characters
chunk_overlap=50, # Overlap by 50 characters
add_start_index=True
)
chunked_texts = splitter.split_documents(_documents)
in_memory_vs.add_documents(chunked_texts)
return f"Uploaded {len(file_list)} documents into in-memory vector store."
########################################
# Submit_queries (ChatInterface Function)
########################################
def submit_queries(message, _messages):
"""
- message: dict with {"text": ..., "files": [...]}
- history: list of ChatMessage
"""
_messages=[]
user_text = message.get("text", "")
user_files = message.get("files", [])
# Process user-uploaded files
if user_files:
for file_obj in user_files:
_messages.append(ChatMessage(role="user", content=f"Uploaded file: {file_obj}"))
upload_response = upload_documents(user_files)
_messages.append(ChatMessage(role="assistant", content=upload_response))
yield _messages
return # Exit early since we don't need to process text or call the LLM
# Append user text if present
if user_text:
events = graph.stream(
{
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_text},
]
},
config,
stream_mode="values"
)
for event in events:
response = event["messages"][-1]
if isinstance(response, AIMessage):
if "tool_calls" in response.additional_kwargs:
_messages.append(
ChatMessage(role="assistant",
content=str(response.tool_calls[0]["args"]),
metadata={"title": str(response.tool_calls[0]["name"]),
"id": config["configurable"]["thread_id"]
}
))
yield _messages
else:
_messages.append(ChatMessage(role="assistant",
content=response.content,
metadata={"id": config["configurable"]["thread_id"]
}
))
yield _messages
return _messages
########################################
# 3) Save Chat History
########################################
CHAT_HISTORY_FILE = "chat_history.json"
def save_chat_history(history):
"""
Saves the chat history into a JSON file.
"""
session_history = [
{
"role": "user" if msg.is_user else "assistant",
"content": msg.content
}
for msg in history
]
with open(CHAT_HISTORY_FILE, "w", encoding="utf-8") as f:
json.dump(session_history, f, ensure_ascii=False, indent=4)
########################################
# 6) Main Gradio Interface
########################################
with gr.Blocks() as AI_Tutor:
gr.Markdown("# AI Tutor Chatbot (Gradio App)")
# Primary Chat Interface
chat_interface = gr.ChatInterface(
fn=submit_queries,
type="messages",
chatbot=gr.Chatbot(
label="Chat Window",
height=500,
type="messages"
),
textbox=gr.MultimodalTextbox(
interactive=True,
file_count="multiple",
file_types=[".pdf",".ppt",".pptx",".doc",".docx",".md","image"],
sources=["upload"],
label="Type your query here:",
placeholder="Enter your question...",
),
title="AI Tutor Chatbot",
description="Ask me anything about Artificial Intelligence!",
multimodal=True,
save_history=True,
)
if __name__ == "__main__":
AI_Tutor.launch(server_name="0.0.0.0", server_port=7860)