Sulai2005's picture
Initial commit
506a2b4
# Adapted from https://github.com/CorentinJ/Real-Time-Voice-Cloning
# MIT License
from typing import List, Union, Optional
import numpy as np
from numpy.lib.stride_tricks import as_strided
import librosa
import torch
import torch.nn.functional as F
from torch import nn, Tensor
from .config import VoiceEncConfig
from .melspec import melspectrogram
def pack(arrays, seq_len: int=None, pad_value=0):
"""
Given a list of length B of array-like objects of shapes (Ti, ...), packs them in a single tensor of
shape (B, T, ...) by padding each individual array on the right.
:param arrays: a list of array-like objects of matching shapes except for the first axis.
:param seq_len: the value of T. It must be the maximum of the lengths Ti of the arrays at
minimum. Will default to that value if None.
:param pad_value: the value to pad the arrays with.
:return: a (B, T, ...) tensor
"""
if seq_len is None:
seq_len = max(len(array) for array in arrays)
else:
assert seq_len >= max(len(array) for array in arrays)
# Convert lists to np.array
if isinstance(arrays[0], list):
arrays = [np.array(array) for array in arrays]
# Convert to tensor and handle device
device = None
if isinstance(arrays[0], torch.Tensor):
tensors = arrays
device = tensors[0].device
else:
tensors = [torch.as_tensor(array) for array in arrays]
# Fill the packed tensor with the array data
packed_shape = (len(tensors), seq_len, *tensors[0].shape[1:])
packed_tensor = torch.full(packed_shape, pad_value, dtype=tensors[0].dtype, device=device)
for i, tensor in enumerate(tensors):
packed_tensor[i, :tensor.size(0)] = tensor
return packed_tensor
def get_num_wins(
n_frames: int,
step: int,
min_coverage: float,
hp: VoiceEncConfig,
):
assert n_frames > 0
win_size = hp.ve_partial_frames
n_wins, remainder = divmod(max(n_frames - win_size + step, 0), step)
if n_wins == 0 or (remainder + (win_size - step)) / win_size >= min_coverage:
n_wins += 1
target_n = win_size + step * (n_wins - 1)
return n_wins, target_n
def get_frame_step(
overlap: float,
rate: float,
hp: VoiceEncConfig,
):
# Compute how many frames separate two partial utterances
assert 0 <= overlap < 1
if rate is None:
frame_step = int(np.round(hp.ve_partial_frames * (1 - overlap)))
else:
frame_step = int(np.round((hp.sample_rate / rate) / hp.ve_partial_frames))
assert 0 < frame_step <= hp.ve_partial_frames
return frame_step
def stride_as_partials(
mel: np.ndarray,
hp: VoiceEncConfig,
overlap=0.5,
rate: float=None,
min_coverage=0.8,
):
"""
Takes unscaled mels in (T, M) format
TODO: doc
"""
assert 0 < min_coverage <= 1
frame_step = get_frame_step(overlap, rate, hp)
# Compute how many partials can fit in the mel
n_partials, target_len = get_num_wins(len(mel), frame_step, min_coverage, hp)
# Trim or pad the mel spectrogram to match the number of partials
if target_len > len(mel):
mel = np.concatenate((mel, np.full((target_len - len(mel), hp.num_mels), 0)))
elif target_len < len(mel):
mel = mel[:target_len]
# Ensure the numpy array data is float32 and contiguous in memory
mel = mel.astype(np.float32, order="C")
# Re-arrange the array in memory to be of shape (N, P, M) with partials overlapping eachother,
# where N is the number of partials, P is the number of frames of each partial and M the
# number of channels of the mel spectrograms.
shape = (n_partials, hp.ve_partial_frames, hp.num_mels)
strides = (mel.strides[0] * frame_step, mel.strides[0], mel.strides[1])
partials = as_strided(mel, shape, strides)
return partials
class VoiceEncoder(nn.Module):
def __init__(self, hp=VoiceEncConfig()):
super().__init__()
self.hp = hp
# Network definition
self.lstm = nn.LSTM(self.hp.num_mels, self.hp.ve_hidden_size, num_layers=3, batch_first=True)
if hp.flatten_lstm_params:
self.lstm.flatten_parameters()
self.proj = nn.Linear(self.hp.ve_hidden_size, self.hp.speaker_embed_size)
# Cosine similarity scaling (fixed initial parameter values)
self.similarity_weight = nn.Parameter(torch.tensor([10.]), requires_grad=True)
self.similarity_bias = nn.Parameter(torch.tensor([-5.]), requires_grad=True)
@property
def device(self):
return next(self.parameters()).device
def forward(self, mels: torch.FloatTensor):
"""
Computes the embeddings of a batch of partial utterances.
:param mels: a batch of unscaled mel spectrograms of same duration as a float32 tensor
of shape (B, T, M) where T is hp.ve_partial_frames
:return: the embeddings as a float32 tensor of shape (B, E) where E is
hp.speaker_embed_size. Embeddings are L2-normed and thus lay in the range [-1, 1].
"""
if self.hp.normalized_mels and (mels.min() < 0 or mels.max() > 1):
raise Exception(f"Mels outside [0, 1]. Min={mels.min()}, Max={mels.max()}")
# Pass the input through the LSTM layers
_, (hidden, _) = self.lstm(mels)
# Project the final hidden state
raw_embeds = self.proj(hidden[-1])
if self.hp.ve_final_relu:
raw_embeds = F.relu(raw_embeds)
# L2 normalize the embeddings.
return raw_embeds / torch.linalg.norm(raw_embeds, dim=1, keepdim=True)
def inference(self, mels: torch.Tensor, mel_lens, overlap=0.5, rate: float=None, min_coverage=0.8, batch_size=None):
"""
Computes the embeddings of a batch of full utterances with gradients.
:param mels: (B, T, M) unscaled mels
:return: (B, E) embeddings on CPU
"""
mel_lens = mel_lens.tolist() if torch.is_tensor(mel_lens) else mel_lens
# Compute where to split the utterances into partials
frame_step = get_frame_step(overlap, rate, self.hp)
n_partials, target_lens = zip(*(get_num_wins(l, frame_step, min_coverage, self.hp) for l in mel_lens))
# Possibly pad the mels to reach the target lengths
len_diff = max(target_lens) - mels.size(1)
if len_diff > 0:
pad = torch.full((mels.size(0), len_diff, self.hp.num_mels), 0, dtype=torch.float32)
mels = torch.cat((mels, pad.to(mels.device)), dim=1)
# Group all partials together so that we can batch them easily
partials = [
mel[i * frame_step: i * frame_step + self.hp.ve_partial_frames]
for mel, n_partial in zip(mels, n_partials) for i in range(n_partial)
]
assert all(partials[0].shape == partial.shape for partial in partials)
partials = torch.stack(partials)
# Forward the partials
n_chunks = int(np.ceil(len(partials) / (batch_size or len(partials))))
partial_embeds = torch.cat([self(batch) for batch in partials.chunk(n_chunks)], dim=0).cpu()
# Reduce the partial embeds into full embeds and L2-normalize them
slices = np.concatenate(([0], np.cumsum(n_partials)))
raw_embeds = [torch.mean(partial_embeds[start:end], dim=0) for start, end in zip(slices[:-1], slices[1:])]
raw_embeds = torch.stack(raw_embeds)
embeds = raw_embeds / torch.linalg.norm(raw_embeds, dim=1, keepdim=True)
return embeds
@staticmethod
def utt_to_spk_embed(utt_embeds: np.ndarray):
"""
Takes an array of L2-normalized utterance embeddings, computes the mean embedding and L2-normalize it to get a
speaker embedding.
"""
assert utt_embeds.ndim == 2
utt_embeds = np.mean(utt_embeds, axis=0)
return utt_embeds / np.linalg.norm(utt_embeds, 2)
@staticmethod
def voice_similarity(embeds_x: np.ndarray, embeds_y: np.ndarray):
"""
Cosine similarity for L2-normalized utterance embeddings or speaker embeddings
"""
embeds_x = embeds_x if embeds_x.ndim == 1 else VoiceEncoder.utt_to_spk_embed(embeds_x)
embeds_y = embeds_y if embeds_y.ndim == 1 else VoiceEncoder.utt_to_spk_embed(embeds_y)
return embeds_x @ embeds_y
def embeds_from_mels(
self, mels: Union[Tensor, List[np.ndarray]], mel_lens=None, as_spk=False, batch_size=32, **kwargs
):
"""
Convenience function for deriving utterance or speaker embeddings from mel spectrograms.
:param mels: unscaled mels strictly within [0, 1] as either a (B, T, M) tensor or a list of (Ti, M) arrays.
:param mel_lens: if passing mels as a tensor, individual mel lengths
:param as_spk: whether to return utterance embeddings or a single speaker embedding
:param kwargs: args for inference()
:returns: embeds as a (B, E) float32 numpy array if <as_spk> is False, else as a (E,) array
"""
# Load mels in memory and pack them
if isinstance(mels, List):
mels = [np.asarray(mel) for mel in mels]
assert all(m.shape[1] == mels[0].shape[1] for m in mels), "Mels aren't in (B, T, M) format"
mel_lens = [mel.shape[0] for mel in mels]
mels = pack(mels)
# Embed them
with torch.inference_mode():
utt_embeds = self.inference(mels.to(self.device), mel_lens, batch_size=batch_size, **kwargs).numpy()
return self.utt_to_spk_embed(utt_embeds) if as_spk else utt_embeds
def embeds_from_wavs(
self,
wavs: List[np.ndarray],
sample_rate,
as_spk=False,
batch_size=32,
trim_top_db: Optional[float]=20,
**kwargs
):
"""
Wrapper around embeds_from_mels
:param trim_top_db: this argument was only added for the sake of compatibility with metavoice's implementation
"""
if sample_rate != self.hp.sample_rate:
wavs = [
librosa.resample(wav, orig_sr=sample_rate, target_sr=self.hp.sample_rate, res_type="kaiser_fast")
for wav in wavs
]
if trim_top_db:
wavs = [librosa.effects.trim(wav, top_db=trim_top_db)[0] for wav in wavs]
if "rate" not in kwargs:
kwargs["rate"] = 1.3 # Resemble's default value.
mels = [melspectrogram(w, self.hp).T for w in wavs]
return self.embeds_from_mels(mels, as_spk=as_spk, batch_size=batch_size, **kwargs)