Upload 3 files
Browse files- Dockerfile +25 -0
- app.py +60 -0
- requirements.txt +7 -0
Dockerfile
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
RUN useradd -m -u 1000 user
|
4 |
+
USER user
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
USER root
|
9 |
+
RUN apt-get update && apt-get install -y \
|
10 |
+
gcc \
|
11 |
+
g++ \
|
12 |
+
cmake \
|
13 |
+
build-essential \
|
14 |
+
libstdc++6 \
|
15 |
+
&& rm -rf /var/lib/apt/lists/*
|
16 |
+
|
17 |
+
USER user
|
18 |
+
|
19 |
+
COPY --chown=user ./requirements.txt requirements.txt
|
20 |
+
|
21 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
22 |
+
|
23 |
+
COPY --chown=user . /app
|
24 |
+
|
25 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from qdrant_client import QdrantClient
|
5 |
+
import torch
|
6 |
+
from llama_cpp import Llama
|
7 |
+
|
8 |
+
llm = Llama.from_pretrained(
|
9 |
+
repo_id="Suku0/mistral-7b-instruct-v0.3-bnb-4bit-GGUF",
|
10 |
+
filename="mistral-7b-instruct-v0.3-bnb-4bit.Q4_K_M.gguf",
|
11 |
+
n_ctx=16384
|
12 |
+
)
|
13 |
+
embedding_model = SentenceTransformer('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
14 |
+
qdrant_client = QdrantClient(
|
15 |
+
url="https://9a5cbf91-7dac-4dd0-80f6-13e512da1060.europe-west3-0.gcp.cloud.qdrant.io:6333",
|
16 |
+
api_key="1M-sCCVolJOOJeRXMBUh4wHfj8bkY4nZyHiau0LBllFr1vsXb1oDPg",
|
17 |
+
)
|
18 |
+
|
19 |
+
def retrieve_context(query):
|
20 |
+
query_vector = embedding_model.encode(query).tolist()
|
21 |
+
|
22 |
+
search_result = qdrant_client.search(
|
23 |
+
collection_name="ctx_collection",
|
24 |
+
query_vector=query_vector,
|
25 |
+
limit=10,
|
26 |
+
with_payload=True
|
27 |
+
)
|
28 |
+
|
29 |
+
context = " ".join([hit.payload["text"] for hit in search_result])
|
30 |
+
return context
|
31 |
+
|
32 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
33 |
+
context = retrieve_context(message)
|
34 |
+
prompt = f"""You are a helpful assistant. Please answer the user's question based on the given context. If the context doesn't provide any answer, say the context doesn't provide the answer.
|
35 |
+
|
36 |
+
### Context:
|
37 |
+
{context}
|
38 |
+
|
39 |
+
### Question:
|
40 |
+
{message}
|
41 |
+
|
42 |
+
### Answer:
|
43 |
+
"""
|
44 |
+
|
45 |
+
response = llm(prompt.format(ctx=context, question=message), max_tokens=243)
|
46 |
+
|
47 |
+
return response["choices"][0]["text"]
|
48 |
+
|
49 |
+
demo = gr.ChatInterface(
|
50 |
+
respond,
|
51 |
+
additional_inputs=[
|
52 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
53 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
55 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
|
56 |
+
]
|
57 |
+
)
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
transformers
|
4 |
+
sentence-transformers
|
5 |
+
qdrant-client
|
6 |
+
llama-cpp-python
|
7 |
+
einops
|