Spaces:
Sleeping
Sleeping
Update src/translate.py
Browse files- src/translate.py +136 -89
src/translate.py
CHANGED
|
@@ -2,110 +2,157 @@
|
|
| 2 |
from __future__ import annotations
|
| 3 |
import os
|
| 4 |
import re
|
| 5 |
-
from typing import
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
_tok_indic_en: Optional[AutoTokenizer] = None
|
| 23 |
-
_mod_indic_en: Optional[AutoModelForSeq2SeqLM] = None
|
| 24 |
-
_tok_en_indic: Optional[AutoTokenizer] = None
|
| 25 |
-
_mod_en_indic: Optional[AutoModelForSeq2SeqLM] = None
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
ENGLISH = "eng_Latn"
|
| 30 |
|
| 31 |
-
def
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
def
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
_tok_indic_en = AutoTokenizer.from_pretrained(INDIC_EN_CKPT, trust_remote_code=True)
|
| 41 |
-
_mod_indic_en = AutoModelForSeq2SeqLM.from_pretrained(
|
| 42 |
-
INDIC_EN_CKPT, trust_remote_code=True
|
| 43 |
-
).to(_DEVICE)
|
| 44 |
-
return _tok_indic_en, _mod_indic_en
|
| 45 |
|
| 46 |
-
def
|
| 47 |
-
global
|
| 48 |
-
if
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
def
|
| 58 |
-
"""
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
def
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
length_penalty=1.0,
|
| 74 |
)
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
-
def
|
| 80 |
-
"""
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
| 82 |
return text
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
return text
|
| 90 |
-
tok, mod = _load_en_indic()
|
| 91 |
-
return _batch_decode(mod, tok, [text], src_lang=ENGLISH, tgt_lang=tgt_lang)[0]
|
| 92 |
|
| 93 |
-
def
|
| 94 |
"""
|
| 95 |
-
|
| 96 |
-
|
| 97 |
"""
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
if
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
| 2 |
from __future__ import annotations
|
| 3 |
import os
|
| 4 |
import re
|
| 5 |
+
from typing import Optional, List
|
| 6 |
|
| 7 |
+
# Public constants
|
| 8 |
+
ENGLISH = "en"
|
| 9 |
+
HINDI = "hi"
|
| 10 |
|
| 11 |
+
# ENV knobs
|
| 12 |
+
ENABLE_TRANSLATION = os.getenv("ENABLE_TRANSLATION", "1") == "1"
|
| 13 |
+
MODEL_ID_EN2INDIC = os.getenv(
|
| 14 |
+
"INDICTRANS2_EN2INDIC_MODEL",
|
| 15 |
+
"ai4bharat/indictrans2-en-indic-distilled"
|
| 16 |
+
)
|
| 17 |
+
# If later you add Indic→English, you can add the reverse distilled model:
|
| 18 |
+
MODEL_ID_INDIC2EN = os.getenv(
|
| 19 |
+
"INDICTRANS2_INDIC2EN_MODEL",
|
| 20 |
+
"ai4bharat/indictrans2-indic-en-distilled"
|
| 21 |
+
)
|
| 22 |
|
| 23 |
+
# Globals (loaded once)
|
| 24 |
+
_MODEL_EN2INDIC = None
|
| 25 |
+
_TOKENIZER_EN2INDIC = None
|
| 26 |
+
_MODEL_INDIC2EN = None
|
| 27 |
+
_TOKENIZER_INDIC2EN = None
|
| 28 |
+
_IPROCESSOR = None # Indic pre/post processor
|
| 29 |
|
| 30 |
+
# Light Hindi detection (Devanagari range)
|
| 31 |
+
_RE_DEVANAGARI = re.compile(r"[\u0900-\u097F]")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
def _likely_hindi(text: str) -> bool:
|
| 34 |
+
return bool(_RE_DEVANAGARI.search(text or ""))
|
|
|
|
| 35 |
|
| 36 |
+
def _try_imports():
|
| 37 |
+
"""Import heavy libs lazily."""
|
| 38 |
+
global transformers, torch, IndicProcessor
|
| 39 |
+
import transformers # type: ignore
|
| 40 |
+
import torch # type: ignore
|
| 41 |
+
from IndicTransToolkit.processor import IndicProcessor # type: ignore
|
| 42 |
+
return transformers, torch, IndicProcessor
|
| 43 |
|
| 44 |
+
def _device():
|
| 45 |
+
# Force CPU on Spaces (safe default)
|
| 46 |
+
return "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
def _load_iprocessor():
|
| 49 |
+
global _IPROCESSOR
|
| 50 |
+
if _IPROCESSOR is not None:
|
| 51 |
+
return _IPROCESSOR
|
| 52 |
+
try:
|
| 53 |
+
_, _, IndicProcessor = _try_imports()
|
| 54 |
+
_IPROCESSOR = IndicProcessor(inference=True)
|
| 55 |
+
except Exception:
|
| 56 |
+
_IPROCESSOR = None
|
| 57 |
+
return _IPROCESSOR
|
| 58 |
|
| 59 |
+
def _load_en2indic():
|
| 60 |
+
"""Load the distilled en→indic model once."""
|
| 61 |
+
global _MODEL_EN2INDIC, _TOKENIZER_EN2INDIC
|
| 62 |
+
if _MODEL_EN2INDIC is not None:
|
| 63 |
+
return _MODEL_EN2INDIC, _TOKENIZER_EN2INDIC
|
| 64 |
+
try:
|
| 65 |
+
transformers, torch, _ = _try_imports()
|
| 66 |
+
tok = transformers.AutoTokenizer.from_pretrained(MODEL_ID_EN2INDIC, trust_remote_code=True)
|
| 67 |
+
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID_EN2INDIC, trust_remote_code=True)
|
| 68 |
+
model.to(_device())
|
| 69 |
+
model.eval()
|
| 70 |
+
_MODEL_EN2INDIC, _TOKENIZER_EN2INDIC = model, tok
|
| 71 |
+
except Exception:
|
| 72 |
+
_MODEL_EN2INDIC, _TOKENIZER_EN2INDIC = None, None
|
| 73 |
+
return _MODEL_EN2INDIC, _TOKENIZER_EN2INDIC
|
| 74 |
|
| 75 |
+
def _load_indic2en():
|
| 76 |
+
"""Load the distilled indic→en model once (only if needed)."""
|
| 77 |
+
global _MODEL_INDIC2EN, _TOKENIZER_INDIC2EN
|
| 78 |
+
if _MODEL_INDIC2EN is not None:
|
| 79 |
+
return _MODEL_INDIC2EN, _TOKENIZER_INDIC2EN
|
| 80 |
+
try:
|
| 81 |
+
transformers, torch, _ = _try_imports()
|
| 82 |
+
tok = transformers.AutoTokenizer.from_pretrained(MODEL_ID_INDIC2EN, trust_remote_code=True)
|
| 83 |
+
model = transformers.AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID_INDIC2EN, trust_remote_code=True)
|
| 84 |
+
model.to(_device())
|
| 85 |
+
model.eval()
|
| 86 |
+
_MODEL_INDIC2EN, _TOKENIZER_INDIC2EN = model, tok
|
| 87 |
+
except Exception:
|
| 88 |
+
_MODEL_INDIC2EN, _TOKENIZER_INDIC2EN = None, None
|
| 89 |
+
return _MODEL_INDIC2EN, _TOKENIZER_INDIC2EN
|
| 90 |
|
| 91 |
+
def _generate(model, tokenizer, inputs: List[str], max_new_tokens=256) -> List[str]:
|
| 92 |
+
"""Run generation on a small batch of strings."""
|
| 93 |
+
if model is None or tokenizer is None:
|
| 94 |
+
return inputs # graceful fallback
|
| 95 |
+
try:
|
| 96 |
+
import torch # local import
|
| 97 |
+
enc = tokenizer(
|
| 98 |
+
inputs,
|
| 99 |
+
return_tensors="pt",
|
| 100 |
+
padding=True,
|
| 101 |
+
truncation=True,
|
| 102 |
+
max_length=512,
|
|
|
|
| 103 |
)
|
| 104 |
+
enc = {k: v.to(_device()) for k, v in enc.items()}
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
outs = model.generate(
|
| 107 |
+
**enc,
|
| 108 |
+
max_new_tokens=max_new_tokens,
|
| 109 |
+
do_sample=False,
|
| 110 |
+
)
|
| 111 |
+
return tokenizer.batch_decode(outs, skip_special_tokens=True)
|
| 112 |
+
except Exception:
|
| 113 |
+
return inputs
|
| 114 |
|
| 115 |
+
def ensure_english(text: str) -> str:
|
| 116 |
+
"""
|
| 117 |
+
If input text looks Hindi, translate to English. Otherwise return as is.
|
| 118 |
+
We keep this very light: only detect Devanagari → hi→en.
|
| 119 |
+
"""
|
| 120 |
+
if not ENABLE_TRANSLATION:
|
| 121 |
return text
|
| 122 |
+
try:
|
| 123 |
+
if _likely_hindi(text):
|
| 124 |
+
model, tok = _load_indic2en()
|
| 125 |
+
ip = _load_iprocessor()
|
| 126 |
+
src = text
|
| 127 |
+
if ip:
|
| 128 |
+
# Normalize/romanize as the toolkit suggests (safe to skip if None)
|
| 129 |
+
src = ip.preprocess_batch([src], src_lang=HINDI, tgt_lang=ENGLISH)[0]
|
| 130 |
+
out = _generate(model, tok, [src])[0]
|
| 131 |
+
if ip:
|
| 132 |
+
out = ip.postprocess_batch([out], lang=ENGLISH)[0]
|
| 133 |
+
return out
|
| 134 |
+
return text
|
| 135 |
+
except Exception:
|
| 136 |
return text
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
def en_to_lang(text: str, tgt_lang: str = HINDI) -> str:
|
| 139 |
"""
|
| 140 |
+
Translate English → target Indic language (default: Hindi).
|
| 141 |
+
If translation stack is unavailable, returns original text.
|
| 142 |
"""
|
| 143 |
+
if not ENABLE_TRANSLATION:
|
| 144 |
+
return text
|
| 145 |
+
if not text:
|
| 146 |
+
return text
|
| 147 |
+
try:
|
| 148 |
+
model, tok = _load_en2indic()
|
| 149 |
+
ip = _load_iprocessor()
|
| 150 |
+
src = text
|
| 151 |
+
if ip:
|
| 152 |
+
src = ip.preprocess_batch([src], src_lang=ENGLISH, tgt_lang=tgt_lang)[0]
|
| 153 |
+
out = _generate(model, tok, [src])[0]
|
| 154 |
+
if ip:
|
| 155 |
+
out = ip.postprocess_batch([out], lang=tgt_lang)[0]
|
| 156 |
+
return out
|
| 157 |
+
except Exception:
|
| 158 |
+
return text
|