Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import InferenceClient
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Set up the client for Mistral model inference
|
5 |
+
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
|
6 |
+
|
7 |
+
# Function to format the conversation history
|
8 |
+
def format_prompt(message, history):
|
9 |
+
prompt = "<s>" # Begin with the start token
|
10 |
+
for user_prompt, bot_response in history:
|
11 |
+
# Append each turn of user-bot interaction to the prompt
|
12 |
+
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> "
|
13 |
+
prompt += f"[INST] {message} [/INST]" # Add the latest user message
|
14 |
+
return prompt
|
15 |
+
|
16 |
+
# Text generation function with parameters
|
17 |
+
def generate(
|
18 |
+
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
19 |
+
):
|
20 |
+
# Ensure temperature and top_p are correctly set
|
21 |
+
temperature = max(float(temperature), 1e-2) # Prevent temperature going below 0.01
|
22 |
+
top_p = float(top_p)
|
23 |
+
|
24 |
+
# Keyword arguments for generation configuration
|
25 |
+
generate_kwargs = dict(
|
26 |
+
temperature=temperature,
|
27 |
+
max_new_tokens=max_new_tokens,
|
28 |
+
top_p=top_p,
|
29 |
+
repetition_penalty=repetition_penalty,
|
30 |
+
do_sample=True,
|
31 |
+
seed=42, # Ensures results are reproducible
|
32 |
+
)
|
33 |
+
|
34 |
+
# Format the prompt with the user's message and history
|
35 |
+
formatted_prompt = format_prompt(prompt, history)
|
36 |
+
|
37 |
+
# Call the text generation endpoint
|
38 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
39 |
+
output = "" # Initialize an empty string for the output
|
40 |
+
|
41 |
+
# Stream the response token by token
|
42 |
+
for response in stream:
|
43 |
+
output += response.token.text # Append the generated tokens to output
|
44 |
+
yield output # Yield partial output for real-time display
|
45 |
+
return output
|
46 |
+
|
47 |
+
# Additional inputs (sliders) for controlling generation parameters
|
48 |
+
additional_inputs=[
|
49 |
+
gr.Slider(
|
50 |
+
label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05,
|
51 |
+
interactive=True, info="Higher values produce more diverse outputs"
|
52 |
+
),
|
53 |
+
gr.Slider(
|
54 |
+
label="Max new tokens", value=256, minimum=0, maximum=1048, step=64,
|
55 |
+
interactive=True, info="The maximum numbers of new tokens"
|
56 |
+
),
|
57 |
+
gr.Slider(
|
58 |
+
label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1.0, step=0.05,
|
59 |
+
interactive=True, info="Higher values sample more low-probability tokens"
|
60 |
+
),
|
61 |
+
gr.Slider(
|
62 |
+
label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05,
|
63 |
+
interactive=True, info="Penalize repeated tokens"
|
64 |
+
)
|
65 |
+
]
|
66 |
+
|
67 |
+
# Gradio Chat Interface for the chatbot
|
68 |
+
gr.ChatInterface(
|
69 |
+
fn=generate, # The generate function is called when the user submits input
|
70 |
+
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
|
71 |
+
additional_inputs=additional_inputs, # Sliders for adjusting generation parameters
|
72 |
+
title="Mistral 7B v0.3 ChatGPT Clone", # Title for the interface
|
73 |
+
description="A ChatGPT clone using Mistral 7B model. Adjust parameters to fine-tune the generation."
|
74 |
+
).launch(show_api=False) # Launch the interface without showing the API key
|