Su4374651 commited on
Commit
bdb1d20
1 Parent(s): 8bade02

Create app1.py

Browse files
Files changed (1) hide show
  1. app1.py +109 -0
app1.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+ from typing import List, Tuple
4
+ import fitz # PyMuPDF
5
+ from sentence_transformers import SentenceTransformer, util
6
+ import numpy as np
7
+ import faiss
8
+
9
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
+
11
+ class MyApp:
12
+ def __init__(self) -> None:
13
+ self.documents = []
14
+ self.embeddings = None
15
+ self.index = None
16
+ self.load_pdf("YOURPDFFILE")
17
+ self.build_vector_db()
18
+
19
+ def load_pdf(self, file_path: str) -> None:
20
+ """Extracts text from a PDF file and stores it in the app's documents."""
21
+ doc = fitz.open(file_path)
22
+ self.documents = []
23
+ for page_num in range(len(doc)):
24
+ page = doc[page_num]
25
+ text = page.get_text()
26
+ self.documents.append({"page": page_num + 1, "content": text})
27
+ print("PDF processed successfully!")
28
+
29
+ def build_vector_db(self) -> None:
30
+ """Builds a vector database using the content of the PDF."""
31
+ model = SentenceTransformer('all-MiniLM-L6-v2')
32
+ # Generate embeddings for all document contents
33
+ self.embeddings = model.encode([doc["content"] for doc in self.documents])
34
+ # Create a FAISS index
35
+ self.index = faiss.IndexFlatL2(self.embeddings.shape[1])
36
+ # Add the embeddings to the index
37
+ self.index.add(np.array(self.embeddings))
38
+ print("Vector database built successfully!")
39
+
40
+ def search_documents(self, query: str, k: int = 3) -> List[str]:
41
+ """Searches for relevant documents using vector similarity."""
42
+ model = SentenceTransformer('all-MiniLM-L6-v2')
43
+ # Generate an embedding for the query
44
+ query_embedding = model.encode([query])
45
+ # Perform a search in the FAISS index
46
+ D, I = self.index.search(np.array(query_embedding), k)
47
+ # Retrieve the top-k documents
48
+ results = [self.documents[i]["content"] for i in I[0]]
49
+ return results if results else ["No relevant documents found."]
50
+
51
+ app = MyApp()
52
+
53
+ def respond(
54
+ message: str,
55
+ history: List[Tuple[str, str]],
56
+ system_message: str,
57
+ max_tokens: int,
58
+ temperature: float,
59
+ top_p: float,
60
+ ):
61
+ system_message = "I offer mock interviews, personalized feedback, and valuable insights into common interview questions and industry-specific tips. My goal is to boost your confidence, improve your communication skills, and equip you with the tools needed to impress potential employers."
62
+ messages = [{"role": "system", "content": system_message}]
63
+
64
+ for val in history:
65
+ if val[0]:
66
+ messages.append({"role": "user", "content": val[0]})
67
+ if val[1]:
68
+ messages.append({"role": "coach", "content": val[1]})
69
+
70
+ messages.append({"role": "user", "content": message})
71
+
72
+ # RAG - Retrieve relevant documents
73
+ retrieved_docs = app.search_documents(message)
74
+ context = "\n".join(retrieved_docs)
75
+ messages.append({"role": "system", "content": "Relevant documents: " + context})
76
+
77
+ response = ""
78
+ for message in client.chat_completion(
79
+ messages,
80
+ max_tokens=max_tokens,
81
+ stream=True,
82
+ temperature=temperature,
83
+ top_p=top_p,
84
+ ):
85
+ token = message.choices[0].delta.content
86
+ response += token
87
+ yield response
88
+
89
+ demo = gr.Blocks()
90
+
91
+ with demo:
92
+ gr.Markdown("**Job Interview Prep Coach**")
93
+ gr.Markdown(
94
+ "‼️Disclaimer: This chatbot is based on a DBT exercise book that is publicly available. "
95
+ "We are not medical practitioners, and the use of this chatbot is at your own responsibility.‼️"
96
+ )
97
+
98
+ chatbot = gr.ChatInterface(
99
+ respond,
100
+ examples=[
101
+ ["What are the most common mistakes candidates make during interviews, and how can I avoid them?"],
102
+ ["Do you have any tips for handling nerves or anxiety during interviews?"],
103
+ ["What are effective strategies for answering behavioral interview questions?"]
104
+ ],
105
+ title='Job Interview Prep Coach'
106
+ )
107
+
108
+ if __name__ == "__main__":
109
+ demo.launch()