Spaces:
Build error
Build error
# MIT License | |
# Copyright (c) Microsoft | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in all | |
# copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
# Copyright (c) [2025] [Microsoft] | |
# Copyright (c) [2025] [Chongjie Ye] | |
# SPDX-License-Identifier: MIT | |
# This file has been modified by Chongjie Ye on 2025/04/10 | |
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE. | |
# This modified file is released under the same license. | |
import gradio as gr | |
import os | |
os.environ['SPCONV_ALGO'] = 'native' | |
from typing import * | |
import torch | |
import numpy as np | |
from hi3dgen.pipelines import Hi3DGenPipeline | |
import trimesh | |
import tempfile | |
MAX_SEED = np.iinfo(np.int32).max | |
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') | |
WEIGHTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'weights') | |
os.makedirs(TMP_DIR, exist_ok=True) | |
os.makedirs(WEIGHTS_DIR, exist_ok=True) | |
def cache_weights(weights_dir: str) -> dict: | |
import os | |
from huggingface_hub import snapshot_download | |
os.makedirs(weights_dir, exist_ok=True) | |
model_ids = [ | |
"Stable-X/trellis-normal-v0-1", | |
"Stable-X/yoso-normal-v1-8-1", | |
"ZhengPeng7/BiRefNet", | |
] | |
cached_paths = {} | |
for model_id in model_ids: | |
print(f"Caching weights for: {model_id}") | |
# Check if the model is already cached | |
local_path = os.path.join(weights_dir, model_id.split("/")[-1]) | |
if os.path.exists(local_path): | |
print(f"Already cached at: {local_path}") | |
cached_paths[model_id] = local_path | |
continue | |
# Download the model and cache it | |
print(f"Downloading and caching model: {model_id}") | |
# Use snapshot_download to download the model | |
local_path = snapshot_download(repo_id=model_id, local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), force_download=False) | |
cached_paths[model_id] = local_path | |
print(f"Cached at: {local_path}") | |
return cached_paths | |
def preprocess_mesh(mesh_prompt): | |
print("Processing mesh") | |
trimesh_mesh = trimesh.load_mesh(mesh_prompt) | |
trimesh_mesh.export(mesh_prompt+'.glb') | |
return mesh_prompt+'.glb' | |
def preprocess_image(image): | |
if image is None: | |
return None | |
image = hi3dgen_pipeline.preprocess_image(image, resolution=1024) | |
return image | |
def generate_3d(image, seed=-1, | |
ss_guidance_strength=3, ss_sampling_steps=50, | |
slat_guidance_strength=3, slat_sampling_steps=6,): | |
if image is None: | |
return None, None, None | |
if seed == -1: | |
seed = np.random.randint(0, MAX_SEED) | |
image = hi3dgen_pipeline.preprocess_image(image, resolution=1024) | |
normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object') | |
outputs = hi3dgen_pipeline.run( | |
normal_image, | |
seed=seed, | |
formats=["mesh",], | |
preprocess_image=False, | |
sparse_structure_sampler_params={ | |
"steps": ss_sampling_steps, | |
"cfg_strength": ss_guidance_strength, | |
}, | |
slat_sampler_params={ | |
"steps": slat_sampling_steps, | |
"cfg_strength": slat_guidance_strength, | |
}, | |
) | |
generated_mesh = outputs['mesh'][0] | |
# Save outputs | |
import datetime | |
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S") | |
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True) | |
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb" | |
# Export mesh | |
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True) | |
trimesh_mesh.export(mesh_path) | |
return normal_image, mesh_path, mesh_path | |
def convert_mesh(mesh_path, export_format): | |
"""Download the mesh in the selected format.""" | |
if not mesh_path: | |
return None | |
# Create a temporary file to store the mesh data | |
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False) | |
temp_file_path = temp_file.name | |
new_mesh_path = mesh_path.replace(".glb", f".{export_format}") | |
mesh = trimesh.load_mesh(mesh_path) | |
mesh.export(temp_file_path) # Export to the temporary file | |
return temp_file_path # Return the path to the temporary file | |
# Create the Gradio interface with improved layout | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
gr.Markdown( | |
""" | |
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1> | |
<p style='text-align: center;'> | |
<strong>V0.1, Introduced By | |
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and | |
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong> | |
</p> | |
""" | |
) | |
with gr.Row(): | |
gr.Markdown(""" | |
<p align="center"> | |
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-website.svg"> | |
</a> | |
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg"> | |
</a> | |
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars"> | |
</a> | |
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;"> | |
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social"> | |
</a> | |
</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Tabs(): | |
with gr.Tab("Single Image"): | |
with gr.Row(): | |
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil") | |
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil") | |
with gr.Tab("Multiple Images"): | |
gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>") | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1) | |
gr.Markdown("#### Stage 1: Sparse Structure Generation") | |
with gr.Row(): | |
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1) | |
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1) | |
gr.Markdown("#### Stage 2: Structured Latent Generation") | |
with gr.Row(): | |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) | |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1) | |
with gr.Group(): | |
with gr.Row(): | |
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary") | |
# Right column - Output | |
with gr.Column(scale=1): | |
with gr.Column(): | |
model_output = gr.Model3D(label="3D Model Preview (Each model is approximately 40MB, may take around 1 minute to load)") | |
with gr.Column(): | |
export_format = gr.Dropdown( | |
choices=["obj", "glb", "ply", "stl"], | |
value="glb", | |
label="File Format" | |
) | |
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False) | |
image_prompt.upload( | |
preprocess_image, | |
inputs=[image_prompt], | |
outputs=[image_prompt] | |
) | |
gen_shape_btn.click( | |
generate_3d, | |
inputs=[ | |
image_prompt, seed, | |
ss_guidance_strength, ss_sampling_steps, | |
slat_guidance_strength, slat_sampling_steps | |
], | |
outputs=[normal_output, model_output, download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
def update_download_button(mesh_path, export_format): | |
if not mesh_path: | |
return gr.File.update(value=None, interactive=False) | |
download_path = convert_mesh(mesh_path, export_format) | |
return download_path | |
export_format.change( | |
update_download_button, | |
inputs=[model_output, export_format], | |
outputs=[download_btn] | |
).then( | |
lambda: gr.Button(interactive=True), | |
outputs=[download_btn], | |
) | |
examples = gr.Examples( | |
examples=[ | |
f'assets/example_image/{image}' | |
for image in os.listdir("assets/example_image") | |
], | |
inputs=image_prompt, | |
) | |
gr.Markdown( | |
""" | |
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects: | |
- **3D Modeling:** Our 3D Model is finetuned from the SOTA open-source 3D foundation model [Trellis](https://github.com/microsoft/TRELLIS) and we draw inspiration from the teams behind [Rodin](https://hyperhuman.deemos.com/rodin), [Tripo](https://www.tripo3d.ai/app/home), and [Dora](https://github.com/Seed3D/Dora). | |
- **Normal Estimation:** Our Normal Estimation Model builds on the leading normal estimation research such as [StableNormal](https://github.com/hugoycj/StableNormal) and [GenPercept](https://github.com/aim-uofa/GenPercept). | |
**Your contributions and collaboration push the boundaries of 3D modeling!** | |
""" | |
) | |
if __name__ == "__main__": | |
# Download and cache the weights | |
cache_weights(WEIGHTS_DIR) | |
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1") | |
hi3dgen_pipeline.cpu() | |
# Initialize normal predictor | |
try: | |
normal_predictor = torch.hub.load(os.path.join(torch.hub.get_dir(), 'hugoycj_StableNormal_main'), "StableNormal_turbo", yoso_version='yoso-normal-v1-8-1', source='local', local_cache_dir='./weights', pretrained=True) | |
except: | |
normal_predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-8-1', local_cache_dir='./weights') | |
# Launch the app | |
demo.launch(share=False, server_name="0.0.0.0") | |