Garment3dKabeer / app.py
Ali Mohsin
more yolo
4437096
import os
import sys
import yaml
import torch
import random
import numpy as np
import gradio as gr
from pathlib import Path
import tempfile
import shutil
from PIL import Image
# Add the current directory to Python path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
# Add packages directory
packages_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'packages')
if os.path.exists(packages_dir):
sys.path.append(packages_dir)
# Fix for torchvision operator error in newer PyTorch versions
try:
import torch._custom_ops
if not hasattr(torch._custom_ops, "_register_all_aten_ops"):
# Add this attribute to avoid errors with newer PyTorch versions and torchvision
setattr(torch._custom_ops, "_register_all_aten_ops", lambda: None)
except:
pass
# Function to convert OBJ to GLB format
def convert_obj_to_glb(obj_file_path, glb_file_path=None):
"""
Convert OBJ file to GLB format using trimesh
Args:
obj_file_path: Path to the OBJ file
glb_file_path: Path for the output GLB file (optional)
Returns:
Path to the created GLB file or None if conversion failed
"""
try:
import trimesh
print(f"Converting {obj_file_path} to GLB format...")
# Check if input file exists
if not os.path.exists(obj_file_path):
print(f"Error: OBJ file {obj_file_path} does not exist")
return None
# Load the OBJ file
mesh = trimesh.load(obj_file_path)
# If no GLB path specified, create one in the same directory
if glb_file_path is None:
glb_file_path = str(Path(obj_file_path).with_suffix('.glb'))
# Export as GLB
mesh.export(glb_file_path, file_type='glb')
print(f"Successfully converted to GLB: {glb_file_path}")
return glb_file_path
except ImportError:
print("trimesh not available for GLB conversion")
return None
except Exception as e:
print(f"Error converting OBJ to GLB: {e}")
return None
# Function to ensure both OBJ and GLB files are created
def ensure_mesh_formats(output_dir):
"""
Ensure both OBJ and GLB files are available in the output directory
Args:
output_dir: Directory containing mesh files
Returns:
tuple: (obj_files, glb_files) - lists of available files
"""
obj_files = []
glb_files = []
output_path = Path(output_dir)
if not output_path.exists():
print(f"Warning: Output directory {output_dir} does not exist")
return obj_files, glb_files
# Find all OBJ files
for obj_file in output_path.rglob("*.obj"):
obj_files.append(str(obj_file))
print(f"Found OBJ file: {obj_file}")
# Try to create corresponding GLB file
glb_file = obj_file.with_suffix('.glb')
if not glb_file.exists():
print(f"Creating GLB file for {obj_file}")
glb_path = convert_obj_to_glb(str(obj_file), str(glb_file))
if glb_path:
glb_files.append(glb_path)
print(f"Successfully created GLB: {glb_path}")
else:
print(f"Failed to create GLB for {obj_file}")
else:
glb_files.append(str(glb_file))
print(f"GLB file already exists: {glb_file}")
# Also check for existing GLB files that might not have corresponding OBJ
for glb_file in output_path.rglob("*.glb"):
if str(glb_file) not in glb_files:
glb_files.append(str(glb_file))
print(f"Found standalone GLB file: {glb_file}")
print(f"Total files found: {len(obj_files)} OBJ files, {len(glb_files)} GLB files")
return obj_files, glb_files
# Check if complex dependencies are installed
def check_complex_dependencies():
"""Check if complex dependencies are available"""
dependencies_ok = True
missing_deps = []
try:
import nvdiffrast
print("βœ“ nvdiffrast available")
except ImportError:
print("βœ— nvdiffrast not available")
dependencies_ok = False
missing_deps.append("nvdiffrast")
try:
import pytorch3d
print("βœ“ pytorch3d available")
except ImportError:
print("βœ— pytorch3d not available")
dependencies_ok = False
missing_deps.append("pytorch3d")
# Check if torch-sparse is available or disabled
try:
import torch_sparse
print("βœ“ torch-sparse available")
except ImportError:
# Check if torch-sparse was disabled
try:
with open("NeuralJacobianFields/PoissonSystem.py", 'r') as f:
content = f.read()
if "USE_TORCH_SPARSE = False" in content:
print("βœ“ torch-sparse is disabled, using built-in PyTorch sparse operations")
else:
print("βœ— torch-sparse not available")
missing_deps.append("torch-sparse")
except:
print("βœ— torch-sparse not available")
missing_deps.append("torch-sparse")
# Check if torch-scatter is available (not critical)
try:
import torch_scatter
print("βœ“ torch-scatter available")
except ImportError:
print("⚠ torch-scatter not available, but this may not be critical")
# Try to safely import torchvision
try:
import torchvision
print(f"βœ“ torchvision {torchvision.__version__} loaded successfully")
except RuntimeError as e:
if "operator torchvision::nms does not exist" in str(e):
print("⚠ Compatibility issue with torchvision. Will attempt to continue anyway.")
else:
print(f"⚠ torchvision error: {e}")
except ImportError:
print("⚠ torchvision not available")
if missing_deps:
print(f"Missing dependencies: {', '.join(missing_deps)}")
return dependencies_ok
# Check dependencies but don't fail if some are missing
print("Checking dependencies...")
deps_ok = check_complex_dependencies()
if not deps_ok:
print("Some dependencies are missing, but continuing anyway...")
print("The app will start with limited functionality.")
print("You can install missing dependencies manually if needed.")
else:
print("All dependencies are available!")
# Enhanced torchvision compatibility handling
def apply_torchvision_fix():
"""Apply comprehensive fix for torchvision compatibility issues"""
try:
import types
# Pre-emptively create torch.ops structure if needed
if not hasattr(torch, 'ops'):
torch.ops = types.SimpleNamespace()
if not hasattr(torch.ops, 'torchvision'):
torch.ops.torchvision = types.SimpleNamespace()
# Create dummy functions for all problematic torchvision operators
torchvision_ops = ['nms', 'roi_align', 'roi_pool', 'ps_roi_align', 'ps_roi_pool']
for op_name in torchvision_ops:
if not hasattr(torch.ops.torchvision, op_name):
if op_name == 'nms':
setattr(torch.ops.torchvision, op_name, lambda *args, **kwargs: torch.zeros(0, dtype=torch.int64))
else:
setattr(torch.ops.torchvision, op_name, lambda *args, **kwargs: torch.zeros(0))
# Fix for torchvision extension issues
try:
import torchvision
if not hasattr(torchvision, 'extension'):
torchvision.extension = types.SimpleNamespace()
torchvision.extension._has_ops = lambda: False
except:
pass
# Fix for torchvision meta registrations
try:
if 'torchvision' in sys.modules:
torchvision = sys.modules['torchvision']
if not hasattr(torchvision, '_meta_registrations'):
torchvision._meta_registrations = types.SimpleNamespace()
except:
pass
print("Applied comprehensive torchvision compatibility fixes")
return True
except Exception as e:
print(f"Failed to apply torchvision fixes: {e}")
return False
# Apply torchvision fix before any imports
apply_torchvision_fix()
# Custom import handling for loop module to handle dependency issues
loop = None
loop_import_error = None
def try_import_loop():
"""Try to import the loop module with comprehensive error handling"""
global loop, loop_import_error
try:
# Apply torchvision fixes before any imports
apply_torchvision_fix()
# Try to import torchvision with error handling
try:
import torchvision
print(f"torchvision {torchvision.__version__} imported successfully")
except (RuntimeError, AttributeError) as e:
if "operator torchvision::nms does not exist" in str(e) or "extension" in str(e):
print("Detected torchvision compatibility issue. Applying additional fixes...")
# Re-apply fixes after the error
apply_torchvision_fix()
# Try importing again with sys.modules manipulation
try:
if 'torchvision' in sys.modules:
del sys.modules['torchvision']
import torchvision
print("torchvision imported successfully after fixes")
except Exception as e2:
print(f"torchvision still has issues, but continuing: {e2}")
else:
print(f"Other torchvision error: {e}")
# Try to import required modules - these are critical for production
try:
import nvdiffrast
print("βœ“ nvdiffrast imported successfully")
except ImportError as e:
print(f"βœ— nvdiffrast import failed: {e}")
# Try to install nvdiffrast if missing
try:
print("πŸ”„ Attempting to install nvdiffrast...")
import subprocess
result = subprocess.run([sys.executable, "-m", "pip", "install", "nvdiffrast"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… nvdiffrast installed successfully")
import nvdiffrast
print("βœ“ nvdiffrast now imported successfully")
else:
print(f"⚠️ nvdiffrast installation failed: {result.stderr}")
loop_import_error = f"Critical dependency missing: nvdiffrast - {str(e)}"
return False
except Exception as install_e:
print(f"⚠️ Could not install nvdiffrast: {install_e}")
loop_import_error = f"Critical dependency missing: nvdiffrast - {str(e)}"
return False
try:
import pytorch3d
print("βœ“ pytorch3d imported successfully")
except ImportError as e:
print(f"βœ— pytorch3d import failed: {e}")
# Try to install pytorch3d if missing
try:
print("πŸ”„ Attempting to install pytorch3d...")
import subprocess
result = subprocess.run([sys.executable, "-m", "pip", "install", "pytorch3d", "--no-deps"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… pytorch3d installed successfully")
import pytorch3d
print("βœ“ pytorch3d now imported successfully")
else:
print(f"⚠️ pytorch3d installation failed: {result.stderr}")
loop_import_error = f"Critical dependency missing: pytorch3d - {str(e)}"
return False
except Exception as install_e:
print(f"⚠️ Could not install pytorch3d: {install_e}")
loop_import_error = f"Critical dependency missing: pytorch3d - {str(e)}"
return False
# Try to import fashion_clip
try:
from packages.fashion_clip.fashion_clip.fashion_clip import FashionCLIP
print("βœ“ FashionCLIP imported successfully")
except ImportError as e:
print(f"βœ— FashionCLIP import failed: {e}")
# Try to install FashionCLIP if missing
try:
print("πŸ”„ Attempting to install FashionCLIP...")
if os.path.exists("packages/fashion_clip"):
import subprocess
result = subprocess.run([sys.executable, "-m", "pip", "install", "-e", "packages/fashion_clip"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… FashionCLIP installed successfully")
from packages.fashion_clip.fashion_clip.fashion_clip import FashionCLIP
print("βœ“ FashionCLIP now imported successfully")
else:
print(f"⚠️ FashionCLIP installation failed: {result.stderr}")
loop_import_error = f"Critical dependency missing: FashionCLIP - {str(e)}"
return False
else:
print("⚠️ FashionCLIP directory not found")
loop_import_error = f"Critical dependency missing: FashionCLIP - {str(e)}"
return False
except Exception as install_e:
print(f"⚠️ Could not install FashionCLIP: {install_e}")
loop_import_error = f"Critical dependency missing: FashionCLIP - {str(e)}"
return False
# Now try to import the loop module - this is the core processing engine
try:
from loop import loop as loop_func
loop = loop_func
print("βœ“ Successfully imported loop module - Processing engine ready!")
return True
except ImportError as e:
print(f"βœ— Loop module import failed: {e}")
loop_import_error = f"Core processing engine failed to load: {str(e)}"
return False
except Exception as e:
print(f"βœ— Unexpected error importing loop module: {e}")
loop_import_error = f"Unexpected error loading processing engine: {str(e)}"
return False
except ImportError as e:
error_msg = f"ImportError: {e}"
print(error_msg)
if "torchvision" in str(e) or "torch" in str(e):
loop_import_error = "PyTorch/torchvision compatibility issue detected. The processing engine could not be loaded."
else:
loop_import_error = f"Missing dependencies: {str(e)}"
return False
except RuntimeError as e:
error_msg = f"RuntimeError: {e}"
print(error_msg)
if "operator torchvision::nms does not exist" in str(e):
loop_import_error = "PyTorch/torchvision version incompatibility. This is a known issue in some environments."
else:
loop_import_error = f"Runtime error during import: {str(e)}"
return False
except Exception as e:
error_msg = f"Unexpected error: {e}"
print(error_msg)
loop_import_error = f"Unexpected error during import: {str(e)}"
return False
# Try to import the loop module
print("Attempting to import processing engine...")
# First, try to run post-install if needed
print("πŸ” Checking for Hugging Face Spaces environment...")
# More robust environment detection for Hugging Face Spaces
is_hf_spaces = (
os.environ.get('HUGGING_FACE_SPACES', '0') == '1' or
os.environ.get('SPACE_ID') is not None or
os.environ.get('HF_SPACE_ID') is not None or
os.environ.get('SPACES_SDK_VERSION') is not None or
'huggingface' in os.environ.get('HOSTNAME', '').lower() or
os.path.exists('/home/user/app') # Common HF Spaces path
)
print(f"Environment variables: HUGGING_FACE_SPACES={os.environ.get('HUGGING_FACE_SPACES', 'not set')}")
print(f"Environment variables: SPACE_ID={os.environ.get('SPACE_ID', 'not set')}")
print(f"Environment variables: HF_SPACE_ID={os.environ.get('HF_SPACE_ID', 'not set')}")
print(f"Environment variables: SPACES_SDK_VERSION={os.environ.get('SPACES_SDK_VERSION', 'not set')}")
print(f"Hostname: {os.environ.get('HOSTNAME', 'not set')}")
print(f"Current working directory: {os.getcwd()}")
if is_hf_spaces:
print("πŸš€ Hugging Face Spaces detected - ensuring all dependencies are installed...")
try:
# Check if critical dependencies are missing
missing_deps = []
try:
import nvdiffrast
print("βœ“ nvdiffrast available")
except ImportError:
missing_deps.append("nvdiffrast")
try:
import pytorch3d
print("βœ“ pytorch3d available")
except ImportError:
missing_deps.append("pytorch3d")
try:
from packages.fashion_clip.fashion_clip.fashion_clip import FashionCLIP
print("βœ“ FashionCLIP available")
except ImportError:
missing_deps.append("FashionCLIP")
if missing_deps:
print(f"⚠️ Missing dependencies detected: {', '.join(missing_deps)}")
print("πŸ”„ Attempting to install missing dependencies...")
# Try to run post_install script
try:
import subprocess
print("πŸ“¦ Running post-install script...")
# Check if post_install.py exists
if os.path.exists("post_install.py"):
print("βœ… post_install.py found, executing...")
result = subprocess.run([sys.executable, "post_install.py"],
capture_output=True, text=True, timeout=600)
if result.returncode == 0:
print("βœ… Post-install script completed successfully")
print("Output:", result.stdout)
else:
print(f"⚠️ Post-install script failed with return code {result.returncode}")
print(f"Error output: {result.stderr}")
print(f"Standard output: {result.stdout}")
else:
print("⚠️ post_install.py not found, attempting manual installation...")
# Manual installation of critical dependencies
try:
print("πŸ“¦ Installing nvdiffrast...")
# Try different installation methods for nvdiffrast
result = subprocess.run([sys.executable, "-m", "pip", "install", "nvdiffrast"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… nvdiffrast installed successfully")
else:
print(f"⚠️ nvdiffrast installation failed: {result.stderr}")
# Try alternative installation
print("πŸ”„ Trying alternative nvdiffrast installation...")
result = subprocess.run([sys.executable, "-m", "pip", "install", "nvdiffrast", "--no-cache-dir"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… nvdiffrast installed successfully (alternative method)")
else:
print(f"⚠️ Alternative nvdiffrast installation also failed: {result.stderr}")
print("πŸ“¦ Installing pytorch3d...")
# Try different installation methods for pytorch3d
result = subprocess.run([sys.executable, "-m", "pip", "install", "pytorch3d", "--no-deps"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… pytorch3d installed successfully")
else:
print(f"⚠️ pytorch3d installation failed: {result.stderr}")
# Try alternative installation
print("πŸ”„ Trying alternative pytorch3d installation...")
result = subprocess.run([sys.executable, "-m", "pip", "install", "pytorch3d", "--no-deps", "--no-cache-dir"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… pytorch3d installed successfully (alternative method)")
else:
print(f"⚠️ Alternative pytorch3d installation also failed: {result.stderr}")
print("πŸ“¦ Installing FashionCLIP...")
if os.path.exists("packages/fashion_clip"):
result = subprocess.run([sys.executable, "-m", "pip", "install", "-e", "packages/fashion_clip"],
capture_output=True, text=True, timeout=300)
if result.returncode == 0:
print("βœ… FashionCLIP installed successfully")
else:
print(f"⚠️ FashionCLIP installation failed: {result.stderr}")
else:
print("⚠️ FashionCLIP directory not found")
print("βœ… Manual installation completed")
# Re-check dependencies after installation
print("πŸ” Re-checking dependencies after installation...")
try:
import nvdiffrast
print("βœ… nvdiffrast now available")
except ImportError:
print("⚠️ nvdiffrast still not available")
try:
import pytorch3d
print("βœ… pytorch3d now available")
except ImportError:
print("⚠️ pytorch3d still not available")
try:
from packages.fashion_clip.fashion_clip.fashion_clip import FashionCLIP
print("βœ… FashionCLIP now available")
except ImportError:
print("⚠️ FashionCLIP still not available")
except Exception as e:
print(f"⚠️ Manual installation failed: {e}")
except Exception as e:
print(f"⚠️ Could not run post-install script: {e}")
else:
print("βœ… All critical dependencies are available")
except Exception as e:
print(f"⚠️ Error checking dependencies: {e}")
else:
print("🏠 Local development environment detected")
# Try to import the loop module after dependency installation attempts
print("πŸ”„ Attempting to import processing engine after dependency checks...")
import_success = try_import_loop()
if import_success:
print("βœ“ Processing engine loaded successfully")
print("🎯 Production mode: All critical dependencies are available!")
else:
print(f"βœ— Processing engine failed to load: {loop_import_error}")
print("❌ CRITICAL ERROR: Cannot start in production mode without core dependencies.")
print("Please ensure all required dependencies are installed:")
print(" - nvdiffrast")
print(" - pytorch3d")
print(" - FashionCLIP")
print(" - torchvision (with compatibility fixes)")
print(" - All other required packages")
# In production, we should fail fast if critical dependencies are missing
if is_hf_spaces:
print("🚨 Production environment detected - exiting due to missing dependencies")
print("πŸ’‘ Try running: python post_install.py")
print("πŸ’‘ Or check the logs above for installation errors")
print("πŸ’‘ You may need to restart the application after dependencies are installed")
sys.exit(1)
else:
print("⚠️ Development mode - continuing with limited functionality")
# Ensure NeuralJacobianFields is properly configured
try:
# Check if PoissonSystem.py needs to be modified to disable torch-sparse
poisson_system_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
"NeuralJacobianFields", "PoissonSystem.py")
if os.path.exists(poisson_system_path):
with open(poisson_system_path, 'r') as f:
content = f.read()
if "USE_TORCH_SPARSE = True" in content:
print("Disabling torch-sparse in PoissonSystem.py")
content = content.replace("USE_TORCH_SPARSE = True", "USE_TORCH_SPARSE = False")
with open(poisson_system_path, 'w') as f:
f.write(content)
print("Successfully disabled torch-sparse in PoissonSystem.py")
except Exception as e:
print(f"Warning: Could not check/modify NeuralJacobianFields configuration: {e}")
# Continue execution, as this is not fatal
# Global variables for configuration
DEFAULT_CONFIG = {
'output_path': './outputs',
'gpu': 0,
'seed': 99,
'clip_model': 'ViT-B/32',
'consistency_clip_model': 'ViT-B/32',
'consistency_vit_stride': 8,
'consistency_vit_layer': 11,
'mesh': os.path.join(os.path.dirname(os.path.abspath(__file__)), 'meshes', 'longsleeve.obj'),
'target_mesh': os.path.join(os.path.dirname(os.path.abspath(__file__)), 'meshes_target', 'jacket_sdf_new.obj'),
'retriangulate': 0,
'bsdf': 'diffuse',
'lr': 0.0025,
'epochs': 1800,
'clip_weight': 2.5,
'delta_clip_weight': 5,
'vgg_weight': 0.0,
'face_weight': 0,
'regularize_jacobians_weight': 0.15,
'consistency_loss_weight': 0,
'consistency_elev_filter': 30,
'consistency_azim_filter': 20,
'batch_size': 24,
'train_res': 512,
'resize_method': 'cubic',
'fov_min': 30.0,
'fov_max': 90.0,
'dist_min': 2.5,
'dist_max': 3.5,
'light_power': 5.0,
'elev_alpha': 1.0,
'elev_beta': 5.0,
'elev_max': 60.0,
'azim_alpha': 1.0,
'azim_beta': 5.0,
'azim_min': 0.0,
'azim_max': 360.0,
'aug_loc': 1,
'aug_light': 1,
'aug_bkg': 0,
'adapt_dist': 1,
'log_interval': 5,
'log_interval_im': 150,
'log_elev': 0,
'log_fov': 60.0,
'log_dist': 3.0,
'log_res': 512,
'log_light_power': 3.0
}
def process_garment(input_type, text_prompt, base_text_prompt, mesh_target_image, source_mesh_type, custom_mesh, epochs, learning_rate, clip_weight, delta_clip_weight, progress=gr.Progress()):
"""
Main function to process garment generation
Args:
input_type: Either "Text" or "Image to Mesh" to determine the processing mode
text_prompt: Text description of target garment (for text mode)
base_text_prompt: Text description of base garment (for text mode)
mesh_target_image: Image for generating a 3D mesh (for image to mesh mode)
source_mesh_type: Type of source mesh to use as starting point (for image to mesh mode)
custom_mesh: Optional custom source mesh file (.obj)
epochs: Number of optimization epochs
learning_rate: Optimization learning rate
clip_weight: Weight for CLIP loss
delta_clip_weight: Weight for delta CLIP loss
progress: Gradio progress tracking object
"""
try:
# Create a temporary output directory
with tempfile.TemporaryDirectory() as temp_dir:
# Update configuration
config = DEFAULT_CONFIG.copy()
# Set up input parameters based on mode
if input_type == "Image to Mesh":
if mesh_target_image is None:
return "Error: Please upload an image for Image to Mesh mode."
# Image-to-Mesh processing
progress(0.05, desc="Preparing mesh generation from image...")
# Save target image to temp directory
target_mesh_image_path = os.path.join(temp_dir, "target_mesh_image.jpg")
try:
if isinstance(mesh_target_image, str):
shutil.copy(mesh_target_image, target_mesh_image_path)
elif isinstance(mesh_target_image, np.ndarray):
# Ensure the array is in the correct format
if len(mesh_target_image.shape) == 3:
if mesh_target_image.shape[2] == 4: # RGBA
mesh_target_image = mesh_target_image[:,:,:3] # Convert to RGB
img = Image.fromarray(mesh_target_image.astype(np.uint8))
img.save(target_mesh_image_path)
else:
return "Error: Invalid image format. Please upload a valid RGB image."
elif hasattr(mesh_target_image, 'save'):
mesh_target_image.save(target_mesh_image_path)
else:
print(f"Unsupported image type: {type(mesh_target_image)}")
return "Error: Could not process the uploaded image. Please try a different image format."
print(f"Target mesh image saved to {target_mesh_image_path}")
# Set mesh paths based on selected source mesh type
# Map display names to actual file names
mesh_mapping = {
"tshirt": "tshirt",
"longsleeve": "longsleeve",
"tanktop": "tanktop",
"poncho": "poncho",
"dress_shortsleeve": "dress_shortsleeve"
}
mesh_file = mesh_mapping.get(source_mesh_type, "tshirt")
# Use absolute paths for mesh files
current_dir = os.path.dirname(os.path.abspath(__file__))
source_mesh_file = os.path.join(current_dir, "meshes", f"{mesh_file}.obj")
# Check if the mesh file exists
if not os.path.exists(source_mesh_file):
return f"Error: Mesh file {source_mesh_file} not found. Please check if the mesh files are available."
print(f"Using source mesh: {source_mesh_file}")
# Configure for image-to-mesh processing
config.update({
'mesh': source_mesh_file,
'image_prompt': target_mesh_image_path,
'base_image_prompt': target_mesh_image_path, # Use same image as base
'use_target_mesh': True,
'fashion_image': True,
'fashion_text': False,
})
except Exception as e:
print(f"Error processing image: {e}")
return f"Error: Failed to process the uploaded image: {str(e)}"
else:
# Text-based processing
if not text_prompt or len(text_prompt.strip()) == 0:
return "Error: Text prompt is required for text-based generation."
if not base_text_prompt or len(base_text_prompt.strip()) == 0:
base_text_prompt = "simple t-shirt" # Default base prompt
config.update({
'text_prompt': text_prompt,
'base_text_prompt': base_text_prompt,
'fashion_image': False,
'fashion_text': True
})
# Handle custom mesh if provided
if custom_mesh is not None:
custom_mesh_path = os.path.join(temp_dir, "custom_mesh.obj")
shutil.copy(custom_mesh, custom_mesh_path)
config['mesh'] = custom_mesh_path
# Update optimization parameters
config.update({
'output_path': temp_dir,
'epochs': int(epochs),
'lr': float(learning_rate),
'clip_weight': float(clip_weight),
'delta_clip_weight': float(delta_clip_weight),
'gpu': 0 # Use first GPU
})
# Set random seeds
random.seed(config['seed'])
os.environ['PYTHONHASHSEED'] = str(config['seed'])
np.random.seed(config['seed'])
torch.manual_seed(config['seed'])
torch.cuda.manual_seed(config['seed'])
torch.backends.cudnn.deterministic = True
progress(0.1, desc="Initializing...")
# Print configuration for debugging
print("Starting processing with configuration:")
print(f"Mode: {'Image' if config.get('fashion_image', False) else 'Text'}")
if config.get('fashion_image', False):
print(f"Target image: {config['image_prompt']}")
print(f"Base image: {config['base_image_prompt']}")
else:
print(f"Target text: {config['text_prompt']}")
print(f"Base text: {config['base_text_prompt']}")
# Run the main processing loop
progress(0.2, desc="Running garment generation...")
try:
# Check if loop is available (should always be available in production)
if loop is None:
error_message = "Error: Processing engine not available. Please check dependencies."
print(error_message)
return error_message
# Run the loop with error handling
try:
print("πŸš€ Starting garment generation with real processing engine...")
print(f"Configuration: {config}")
# Validate mesh files before processing
if 'mesh' in config and config['mesh']:
mesh_path = config['mesh']
if not os.path.exists(mesh_path):
error_message = f"Error: Source mesh file not found: {mesh_path}"
print(error_message)
return error_message
# Check if mesh file is valid
try:
import pymeshlab
ms = pymeshlab.MeshSet()
ms.load_new_mesh(mesh_path)
if ms.current_mesh().vertex_number() == 0:
error_message = f"Error: Source mesh file has no vertices: {mesh_path}"
print(error_message)
return error_message
print(f"βœ“ Source mesh validated: {ms.current_mesh().vertex_number()} vertices, {ms.current_mesh().face_number()} faces")
except Exception as mesh_e:
print(f"Warning: Could not validate mesh file: {mesh_e}")
loop(config)
print("βœ… Garment generation completed successfully!")
except ValueError as ve:
print(f"❌ Validation error during garment generation: {ve}")
if "no vertices" in str(ve).lower() or "no faces" in str(ve).lower():
error_message = f"Error: Invalid mesh data detected. The source mesh appears to be corrupted or empty. Please try a different mesh file."
elif "jacobian" in str(ve).lower():
error_message = f"Error: Jacobian computation failed. This may indicate an issue with the mesh structure or processing pipeline."
elif "index" in str(ve).lower() and "bounds" in str(ve).lower():
error_message = f"Error: Mesh processing failed due to invalid data structure. This may indicate corrupted mesh files or processing errors."
else:
error_message = f"Error during processing: {str(ve)}"
return error_message
except FileNotFoundError as fe:
print(f"❌ File not found error during garment generation: {fe}")
if "mesh" in str(fe).lower():
error_message = f"Error: Required mesh file not found during processing. This may indicate an issue with the mesh loading pipeline."
elif "mtl" in str(fe).lower():
error_message = f"Error: Material file not found. This may indicate an issue with the mesh file structure."
else:
error_message = f"Error: Required file not found during processing: {str(fe)}"
return error_message
except Exception as e:
print(f"❌ Error during garment generation: {e}")
import traceback
traceback.print_exc()
# Provide more specific error messages based on error type
if "nvdiffrast" in str(e).lower():
error_message = "Error: Rendering engine (nvdiffrast) failed. This may be due to OpenGL/EGL compatibility issues."
elif "clip" in str(e).lower():
error_message = "Error: CLIP model failed to load or process. This may be due to model availability or compatibility issues."
elif "cuda" in str(e).lower() or "gpu" in str(e).lower():
error_message = "Error: GPU/CUDA processing failed. This may be due to hardware compatibility or driver issues."
elif "memory" in str(e).lower():
error_message = "Error: Insufficient memory during processing. Try reducing the number of epochs or using a smaller mesh."
else:
error_message = f"Error during processing: {str(e)}"
return error_message
except RuntimeError as e:
print(f"Runtime error during processing: {e}")
if "operator torchvision::nms does not exist" in str(e):
error_message = "Error: PyTorch/torchvision version incompatibility detected. This is a known issue in some environments."
print(error_message)
return error_message
else:
error_message = f"Runtime error during processing: {str(e)}"
print(error_message)
return error_message
except Exception as e:
print(f"Error during processing: {e}")
error_message = f"Error during processing: {str(e)}"
print(error_message)
return error_message
progress(0.9, desc="Processing complete, preparing output...")
# Look for output files and ensure both OBJ and GLB formats are available
obj_files = []
glb_files = []
image_files = []
print("Searching for output files and ensuring GLB conversion...")
# First check for mesh files in mesh_final directory (priority)
mesh_final_dir = Path(temp_dir) / "mesh_final"
if mesh_final_dir.exists():
print(f"Found mesh_final directory at {mesh_final_dir}")
# Ensure both OBJ and GLB formats are available
obj_files, glb_files = ensure_mesh_formats(mesh_final_dir)
print(f"Found {len(obj_files)} OBJ files and {len(glb_files)} GLB files in mesh_final")
else:
print("mesh_final directory not found")
# Check other mesh directories
for mesh_dir in Path(temp_dir).glob("mesh_*"):
if mesh_dir.is_dir() and mesh_dir.name != 'mesh_final':
print(f"Checking directory: {mesh_dir}")
dir_obj_files, dir_glb_files = ensure_mesh_formats(mesh_dir)
obj_files.extend(dir_obj_files)
glb_files.extend(dir_glb_files)
# Collect image files for visualization
for file_path in Path(temp_dir).rglob("*"):
if file_path.is_file() and file_path.suffix.lower() in ['.png', '.jpg', '.jpeg', '.gif', '.mp4']:
image_files.append(str(file_path))
print(f"Found {len(glb_files)} GLB files, {len(obj_files)} OBJ files, and {len(image_files)} image files")
# Prioritize output: GLB, OBJ, then images
if glb_files:
print(f"Returning GLB file: {glb_files[0]}")
return glb_files[0] # Return first GLB file (best for web viewing)
elif obj_files:
print(f"Returning OBJ file: {obj_files[0]}")
return obj_files[0] # Return first OBJ file
elif image_files:
print(f"Returning image file: {image_files[0]}")
return image_files[0] # Return an image if no mesh was found
else:
print("No output files found")
return None
except Exception as e:
import traceback
error_details = traceback.format_exc()
print(f"Error during processing: {str(e)}")
print(f"Error details: {error_details}")
# Return None instead of an error string to avoid file not found errors with Gradio
return None
def create_combined_mesh_output(output_dir):
"""
Create a combined output showing both OBJ and GLB files if available
Args:
output_dir: Directory containing mesh files
Returns:
tuple: (primary_file, secondary_file, status_message)
"""
obj_files, glb_files = ensure_mesh_formats(output_dir)
if glb_files and obj_files:
# Both formats available - return GLB as primary (better for web viewing)
return glb_files[0], obj_files[0], "πŸŽ‰ Success! Both GLB and OBJ files generated. GLB file is displayed (better for web viewing), OBJ file is also available."
elif glb_files:
return glb_files[0], None, "πŸŽ‰ Success! GLB file generated and ready for download."
elif obj_files:
return obj_files[0], None, "πŸŽ‰ Success! OBJ file generated and ready for download."
else:
return None, None, "❌ No mesh files were generated. Please check the processing logs."
def create_interface():
"""
Create the Gradio interface with simplified components
"""
with gr.Blocks(title="Garment3DGen - 3D Garment Stylization") as interface:
gr.Markdown("""
# Garment3DGen: 3D Garment Stylization and Texture Generation
This tool allows you to stylize 3D garments using text prompts or images. Generate a new 3D garment mesh (.obj/.glb)
that can be used for virtual try-on applications.
## How to use:
1. Choose **Text** or **Image to Mesh** input mode using the radio button below
2. For **Text** mode: Enter descriptions of your target and base garment styles
3. For **Image to Mesh** mode: Upload an image to generate a 3D mesh directly and select a base mesh type
4. Click "Generate 3D Garment" to create your 3D mesh file
5. **GLB files** are automatically generated for better web viewing and virtual try-on compatibility
""")
with gr.Row():
with gr.Column(scale=1):
# Input type selector
input_type = gr.Radio(
choices=["Text", "Image to Mesh"],
value="Text",
label="Generation Method",
interactive=True
)
# Text inputs (visible by default)
with gr.Group(visible=True) as text_group:
text_prompt = gr.Textbox(
label="Target Text Prompt",
placeholder="e.g., leather jacket with studs",
value="leather jacket with studs"
)
base_text_prompt = gr.Textbox(
label="Base Text Prompt",
placeholder="e.g., simple t-shirt",
value="simple t-shirt"
)
# Image to Mesh inputs (hidden by default)
with gr.Group(visible=False) as image_to_mesh_group:
gr.Markdown("### πŸ“Έ Upload Garment Image")
mesh_target_image = gr.Image(
label="Target Garment Image for Mesh Generation",
sources=["upload", "clipboard", "webcam"],
type="numpy",
interactive=True,
height=300,
show_label=True
)
gr.Markdown("*Upload an image of the garment to convert directly to a 3D mesh*")
gr.Markdown("### 🎯 Select Base Mesh Type")
source_mesh_type = gr.Dropdown(
label="Source Mesh Type",
choices=["tshirt", "longsleeve", "tanktop", "poncho", "dress_shortsleeve"],
value="tshirt",
interactive=True
)
gr.Markdown("*Select the type of base garment mesh to use as a starting point*")
# Custom mesh
custom_mesh = gr.File(
label="Custom Source Mesh (Optional)",
file_types=[".obj"]
)
# Simple parameters
epochs = gr.Slider(
minimum=100,
maximum=3000,
value=1800,
step=100,
label="Number of Epochs"
)
learning_rate = gr.Slider(
minimum=0.0001,
maximum=0.01,
value=0.0025,
step=0.0001,
label="Learning Rate"
)
clip_weight = gr.Slider(
minimum=0.1,
maximum=10.0,
value=2.5,
step=0.1,
label="CLIP Weight"
)
delta_clip_weight = gr.Slider(
minimum=0.1,
maximum=20.0,
value=5.0,
step=0.1,
label="Delta CLIP Weight"
)
generate_btn = gr.Button("Generate 3D Garment")
with gr.Column():
# Primary output (GLB preferred)
output = gr.File(
label="Generated 3D Garment (GLB/OBJ)",
file_types=[".obj", ".glb", ".png", ".jpg"],
file_count="single"
)
# Secondary output (OBJ if GLB is primary)
secondary_output = gr.File(
label="Alternative Format (OBJ/GLB)",
file_types=[".obj", ".glb"],
file_count="single",
visible=False
)
gr.Markdown("""
## Tips:
- For text mode: Be specific in your descriptions (e.g., "red leather jacket with zippers")
- For image to mesh mode: Use clear, front-facing garment images to generate a 3D mesh directly
- Choose the appropriate base mesh type that matches your target garment
- Higher epochs = better quality but longer processing time
- **GLB files** are automatically generated for better web viewing and virtual try-on compatibility
- **OBJ files** are also available for traditional 3D software compatibility
- Output files can be downloaded by clicking on them
Processing may take several minutes.
""")
# Add a status output for errors and messages
if loop is not None:
engine_status = "βœ… Processing engine loaded successfully - Production Ready!"
status_msg = "🎯 Ready to generate garments! Select an input method and click 'Generate 3D Garment'."
else:
engine_status = f"❌ Processing engine unavailable: {loop_import_error or 'Unknown error'}"
status_msg = "❌ CRITICAL ERROR: Processing engine failed to load. Please check that all dependencies are properly installed."
engine_status_output = gr.Markdown(f"**System Status:** {engine_status}")
status_output = gr.Markdown(status_msg)
# Define a function to handle mode changes with clearer UI feedback
def update_mode(mode):
print(f"Mode changed to: {mode}")
text_visibility = mode == "Text"
image_to_mesh_visibility = mode == "Image to Mesh"
status_msg = f"Mode changed to {mode}. "
if text_visibility:
status_msg += "Enter garment descriptions and click Generate."
else:
status_msg += "Upload a garment image and select mesh type, then click Generate."
print(f"Text visibility: {text_visibility}, Image to Mesh visibility: {image_to_mesh_visibility}")
print(f"Returning updates: text_group={text_visibility}, image_to_mesh_group={image_to_mesh_visibility}")
return (
gr.Group.update(visible=text_visibility),
gr.Group.update(visible=image_to_mesh_visibility),
status_msg
)
# Function to handle processing with better error feedback and dual output
def process_with_feedback(*args):
try:
# Check if processing engine is available
if loop is None:
return None, None, "❌ ERROR: Processing engine not available. Please check that all dependencies are properly installed."
result = process_garment(*args)
if result is None:
return None, None, "Processing completed but no output files were generated. Please check the logs for more details."
elif isinstance(result, str) and result.startswith("Error:"):
# Return None for the file outputs and the error message for status
return None, None, result
elif isinstance(result, str) and os.path.exists(result):
# Valid file path - check if we can create a combined output
result_path = Path(result)
if result_path.suffix.lower() == '.glb':
# GLB file - try to find corresponding OBJ
obj_file = result_path.with_suffix('.obj')
if obj_file.exists():
return result, str(obj_file), "πŸŽ‰ Success! Both GLB and OBJ files generated. GLB file is displayed (better for web viewing), OBJ file is also available."
else:
return result, None, "πŸŽ‰ Success! GLB file generated and ready for download."
elif result_path.suffix.lower() == '.obj':
# OBJ file - try to find corresponding GLB or create one
glb_file = result_path.with_suffix('.glb')
if glb_file.exists():
return str(glb_file), result, "πŸŽ‰ Success! Both GLB and OBJ files generated. GLB file is displayed (better for web viewing), OBJ file is also available."
else:
# Try to convert OBJ to GLB
glb_path = convert_obj_to_glb(result)
if glb_path:
return glb_path, result, "πŸŽ‰ Success! Both GLB and OBJ files generated. GLB file is displayed (better for web viewing), OBJ file is also available."
else:
return result, None, "πŸŽ‰ Success! OBJ file generated and ready for download."
else:
# Some other file type
return result, None, "πŸŽ‰ Processing completed successfully! Download your file below."
elif isinstance(result, str):
# Some other string that's not an error and not a file path
return None, None, f"Unexpected result: {result}"
else:
# Should be a file path or None
return result, None, "πŸŽ‰ Processing completed successfully! Download your 3D garment file below."
except Exception as e:
import traceback
print(f"Error in interface: {str(e)}")
print(traceback.format_exc())
return None, None, f"❌ Error: {str(e)}"
# Toggle visibility based on input mode with better feedback
input_type.change(
fn=update_mode,
inputs=[input_type],
outputs=[text_group, image_to_mesh_group, status_output],
show_progress=True
)
# Connect the button to the processing function with error handling and dual output
generate_btn.click(
fn=process_with_feedback,
inputs=[
input_type,
text_prompt,
base_text_prompt,
mesh_target_image,
source_mesh_type,
custom_mesh,
epochs,
learning_rate,
clip_weight,
delta_clip_weight
],
outputs=[output, secondary_output, status_output]
)
# Update secondary output visibility when primary output changes
def update_secondary_visibility(primary_file):
"""Update secondary output visibility based on whether both formats are available"""
if primary_file is not None and primary_file != "":
# Check if there's a corresponding file in the other format
primary_path = Path(primary_file)
if primary_path.suffix.lower() == '.glb':
# Check if corresponding OBJ exists
obj_file = primary_path.with_suffix('.obj')
if obj_file.exists():
return gr.update(visible=True)
elif primary_path.suffix.lower() == '.obj':
# Check if corresponding GLB exists
glb_file = primary_path.with_suffix('.glb')
if glb_file.exists():
return gr.update(visible=True)
return gr.update(visible=False)
# Connect the secondary output visibility to the primary output
output.change(
fn=update_secondary_visibility,
inputs=[output],
outputs=[secondary_output]
)
return interface
if __name__ == "__main__":
print("Starting Garment3DGen application...")
# Apply final torchvision fixes before launching
try:
apply_torchvision_fix()
print("Final torchvision compatibility check completed")
except Exception as e:
print(f"Warning: Could not apply final torchvision fixes: {e}")
# Create and launch the interface
try:
interface = create_interface()
print("Gradio interface created successfully")
# Launch with error handling
interface.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
quiet=False,
debug=True
)
except Exception as e:
print(f"Error launching interface: {e}")
import traceback
print("Full error traceback:")
print(traceback.format_exc())
# Provide helpful error messages
if "torchvision" in str(e) or "operator" in str(e):
print("\n" + "="*80)
print("CRITICAL ERROR: PyTorch/torchvision compatibility issue detected.")
print("This is a known issue in some environments.")
print("The error occurred during interface launch.")
print("="*80 + "\n")
elif "loop" in str(e) or "dependencies" in str(e):
print("\n" + "="*80)
print("DEPENDENCY ERROR: Required modules could not be loaded.")
print("Check that all dependencies are properly installed.")
print("="*80 + "\n")
else:
print("\n" + "="*80)
print("UNKNOWN ERROR: An unexpected error occurred.")
print("Please check the logs above for more details.")
print("="*80 + "\n")