si43-imgcap-git / app.py
ron-hf's picture
Update font family
3b57238
raw
history blame contribute delete
2.1 kB
#!/usr/bin/env python
import gradio as gr
import PIL.Image
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
DESCRIPTION = "# Capabara - Image Captioning with GIT"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "microsoft/git-large-coco"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id).to(device)
@spaces.GPU
def run(image: PIL.Image.Image) -> str:
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
pixel_values=inputs.pixel_values, num_beams=3, max_length=20, min_length=5
)
return processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
with gr.Blocks(
title="Capabara - Image Captioning with GIT",
theme=gr.themes.Default(font=[gr.themes.GoogleFont("Work Sans"), "sans-serif"]),
css_paths="static/css/style.css",
) as demo:
gr.Image(
elem_id="capa-logo",
value="./static/assets/TM_Capabara_210622.png",
container=False,
height=139,
width=176,
show_download_button=False,
show_fullscreen_button=False,
)
gr.HTML(
elem_id="capa-title",
value="""
<h1>Capabara - Image Captioning with GIT</h1>
""",
)
input_image = gr.Image(type="pil")
run_button = gr.Button(value="Caption", elem_classes=["capa-btn"])
output = gr.Textbox(label="Result")
gr.HTML("""<br/>""")
gr.HTML(
"""
<h4>Reference</h4>
<ul>
<li>
<p>
This project uses code from <a href="https://huggingface.co/spaces/hysts/image-captioning-with-git/tree/main" target="_blank">Hysts</a>. Thank you for your contributions!
</p>
</li>
</ul>
"""
)
run_button.click(
fn=run,
inputs=input_image,
outputs=output,
api_name="caption",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()