Spaces:
Runtime error
Runtime error
StevenLimcorn
commited on
Commit
β’
346f0e5
1
Parent(s):
6d5e27b
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import numpy as np
|
2 |
import soundfile as sf
|
3 |
import yaml
|
@@ -6,40 +7,86 @@ import tensorflow as tf
|
|
6 |
|
7 |
from tensorflow_tts.inference import TFAutoModel
|
8 |
from tensorflow_tts.inference import AutoProcessor
|
|
|
9 |
import gradio as gr
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
inputs =
|
|
|
|
|
|
|
|
|
43 |
outputs = gr.outputs.Audio(type="file", label="Output Audio")
|
44 |
|
45 |
|
@@ -48,8 +95,8 @@ description = "Gradio demo for TensorFlowTTS: Real-Time State-of-the-art Speech
|
|
48 |
article = "<p style='text-align: center'><a href='https://tensorspeech.github.io/TensorFlowTTS/'>TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2</a> | <a href='https://github.com/TensorSpeech/TensorFlowTTS'>Github Repo</a></p>"
|
49 |
|
50 |
examples = [
|
51 |
-
|
52 |
-
|
53 |
]
|
54 |
|
55 |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
|
|
|
1 |
+
from matplotlib.pyplot import text
|
2 |
import numpy as np
|
3 |
import soundfile as sf
|
4 |
import yaml
|
|
|
7 |
|
8 |
from tensorflow_tts.inference import TFAutoModel
|
9 |
from tensorflow_tts.inference import AutoProcessor
|
10 |
+
from tensorflow_tts.inference import AutoConfig
|
11 |
import gradio as gr
|
12 |
|
13 |
+
MODEL_NAMES = [
|
14 |
+
"Fastspeech2 + Melgan",
|
15 |
+
"Tacotron2 + Melgan",
|
16 |
+
]
|
17 |
|
18 |
+
fastspeech = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech-ljspeech-en", name="fastspeech")
|
19 |
+
fastspeech2 = TFAutoModel.from_pretrained("tensorspeech/tts-fastspeech2-ljspeech-en", name="fastspeech2")
|
20 |
+
tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-ljspeech-en", name="tacotron2")
|
21 |
+
melgan = TFAutoModel.from_pretrained("tensorspeech/tts-melgan-ljspeech-en", name="melgan")
|
22 |
+
mb_melgan = TFAutoModel.from_pretrained("tensorspeech/tts-mb_melgan-ljspeech-en", name="mb_melgan")
|
23 |
+
melgan_stft_config = AutoConfig.from_pretrained('TensorFlowTTS/examples/melgan_stft/conf/melgan_stft.v1.yaml')
|
24 |
+
melgan_stft = TFAutoModel.from_pretrained(
|
25 |
+
config=melgan_stft_config,
|
26 |
+
pretrained_path="melgan.stft-2M.h5",
|
27 |
+
name="melgan_stft"
|
28 |
+
)
|
29 |
|
30 |
+
MODEL_DICT = {
|
31 |
+
"Fastspeech2" : fastspeech2,
|
32 |
+
"Tacotron2" : tacotron2,
|
33 |
+
"Melgan": melgan,
|
34 |
+
"MB-Melgan": mb_melgan,
|
35 |
+
"Melgan-STFT": melgan_stft
|
36 |
+
}
|
37 |
|
38 |
+
def inference(input):
|
39 |
+
input_text, model_type = input[0], input[1]
|
40 |
|
41 |
+
text2mel_name, vocoder_name = model_type.split(" + ")
|
42 |
+
text2mel_model, vocoder_model = MODEL_DICT[text2mel_name], MODEL_DICT[vocoder_name]
|
43 |
+
processor = AutoProcessor.from_pretrained(text2mel_name)
|
44 |
+
input_ids = processor.text_to_sequence(input_text)
|
45 |
+
|
46 |
+
if text2mel_name == "Tacotron":
|
47 |
+
_, mel_outputs, stop_token_prediction, alignment_history = text2mel_model.inference(
|
48 |
+
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
49 |
+
tf.convert_to_tensor([len(input_ids)], tf.int32),
|
50 |
+
tf.convert_to_tensor([0], dtype=tf.int32)
|
51 |
+
)
|
52 |
+
elif text2mel_name == "Fastspeech":
|
53 |
+
mel_before, mel_outputs, duration_outputs = text2mel_model.inference(
|
54 |
+
input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
55 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
56 |
+
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
57 |
+
)
|
58 |
+
elif text2mel_name == "Fastspeech2":
|
59 |
+
mel_before, mel_outputs, duration_outputs, _, _ = text2mel_model.inference(
|
60 |
+
tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0),
|
61 |
+
speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32),
|
62 |
+
speed_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
63 |
+
f0_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
64 |
+
energy_ratios=tf.convert_to_tensor([1.0], dtype=tf.float32),
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
raise ValueError("Only TACOTRON, FASTSPEECH, FASTSPEECH2 are supported on text2mel_name")
|
68 |
+
|
69 |
+
# vocoder part
|
70 |
+
if vocoder_name == "Melgan" or vocoder_name == "Melgan-STFT":
|
71 |
+
audio = vocoder_model(mel_outputs)[0, :, 0]
|
72 |
+
elif vocoder_name == "MB-Melgan":
|
73 |
+
audio = vocoder_model(mel_outputs)[0, :, 0]
|
74 |
+
else:
|
75 |
+
raise ValueError("Only MELGAN, MELGAN-STFT and MB_MELGAN are supported on vocoder_name")
|
76 |
+
|
77 |
+
# if text2mel_name == "TACOTRON":
|
78 |
+
# return mel_outputs.numpy(), alignment_history.numpy(), audio.numpy()
|
79 |
+
# else:
|
80 |
+
# return mel_outputs.numpy(), audio.numpy()
|
81 |
+
|
82 |
+
sf.write('./audio_after.wav', audio, 22050, "PCM_16")
|
83 |
+
return './audio_after.wav'
|
84 |
|
85 |
+
inputs = [
|
86 |
+
gr.inputs.Textbox(lines=5, label="Input Text"),
|
87 |
+
gr.inputs.Radio(label="Pick a TTS Model",choices=MODEL_NAMES,)
|
88 |
+
]
|
89 |
+
|
90 |
outputs = gr.outputs.Audio(type="file", label="Output Audio")
|
91 |
|
92 |
|
|
|
95 |
article = "<p style='text-align: center'><a href='https://tensorspeech.github.io/TensorFlowTTS/'>TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2</a> | <a href='https://github.com/TensorSpeech/TensorFlowTTS'>Github Repo</a></p>"
|
96 |
|
97 |
examples = [
|
98 |
+
["TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2."],
|
99 |
+
["With Tensorflow 2, we can speed-up training/inference progress, optimizer further by using fake-quantize aware and pruning, make TTS models can be run faster than real-time and be able to deploy on mobile devices or embedded systems."]
|
100 |
]
|
101 |
|
102 |
gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples).launch()
|