Spaces:
Running
on
Zero
Running
on
Zero
StevenChen16
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,146 @@
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
@spaces.GPU
|
12 |
-
def
|
13 |
-
|
14 |
-
return whisperx.load_model("large-v3", device=device, compute_type=compute_type)
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
result = model.transcribe(audio_path)
|
22 |
-
return result['text']
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
fn=transcribe,
|
27 |
-
inputs=
|
|
|
|
|
|
|
28 |
outputs="text",
|
29 |
-
title="
|
30 |
-
description=
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import spaces
|
2 |
import torch
|
3 |
+
|
4 |
import gradio as gr
|
5 |
+
import yt_dlp as youtube_dl
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
+
|
9 |
+
import tempfile
|
10 |
+
import os
|
11 |
+
|
12 |
+
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
13 |
+
BATCH_SIZE = 8
|
14 |
+
FILE_LIMIT_MB = 1000
|
15 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
16 |
+
|
17 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
pipe = pipeline(
|
20 |
+
task="automatic-speech-recognition",
|
21 |
+
model=MODEL_NAME,
|
22 |
+
chunk_length_s=30,
|
23 |
+
device=device,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
@spaces.GPU
|
28 |
+
def transcribe(inputs, task):
|
29 |
+
if inputs is None:
|
30 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
31 |
+
|
32 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
33 |
+
return text
|
34 |
+
|
35 |
+
|
36 |
+
def _return_yt_html_embed(yt_url):
|
37 |
+
video_id = yt_url.split("?v=")[-1]
|
38 |
+
HTML_str = (
|
39 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
40 |
+
" </center>"
|
41 |
+
)
|
42 |
+
return HTML_str
|
43 |
|
44 |
+
def download_yt_audio(yt_url, filename):
|
45 |
+
info_loader = youtube_dl.YoutubeDL()
|
46 |
+
|
47 |
+
try:
|
48 |
+
info = info_loader.extract_info(yt_url, download=False)
|
49 |
+
except youtube_dl.utils.DownloadError as err:
|
50 |
+
raise gr.Error(str(err))
|
51 |
+
|
52 |
+
file_length = info["duration_string"]
|
53 |
+
file_h_m_s = file_length.split(":")
|
54 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
55 |
+
|
56 |
+
if len(file_h_m_s) == 1:
|
57 |
+
file_h_m_s.insert(0, 0)
|
58 |
+
if len(file_h_m_s) == 2:
|
59 |
+
file_h_m_s.insert(0, 0)
|
60 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
+
|
62 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
64 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
+
|
67 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
+
|
69 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
+
try:
|
71 |
+
ydl.download([yt_url])
|
72 |
+
except youtube_dl.utils.ExtractorError as err:
|
73 |
+
raise gr.Error(str(err))
|
74 |
|
75 |
+
@spaces.GPU
|
76 |
+
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
77 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
|
|
78 |
|
79 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
81 |
+
download_yt_audio(yt_url, filepath)
|
82 |
+
with open(filepath, "rb") as f:
|
83 |
+
inputs = f.read()
|
84 |
|
85 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
|
|
|
|
87 |
|
88 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
89 |
+
|
90 |
+
return html_embed_str, text
|
91 |
+
|
92 |
+
|
93 |
+
demo = gr.Blocks(theme=gr.themes.Ocean())
|
94 |
+
|
95 |
+
mf_transcribe = gr.Interface(
|
96 |
fn=transcribe,
|
97 |
+
inputs=[
|
98 |
+
gr.Audio(sources="microphone", type="filepath"),
|
99 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
+
],
|
101 |
outputs="text",
|
102 |
+
title="Whisper Large V3 Turbo: Transcribe Audio",
|
103 |
+
description=(
|
104 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
+
" of arbitrary length."
|
107 |
+
),
|
108 |
+
allow_flagging="never",
|
109 |
)
|
110 |
|
111 |
+
file_transcribe = gr.Interface(
|
112 |
+
fn=transcribe,
|
113 |
+
inputs=[
|
114 |
+
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
115 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
+
],
|
117 |
+
outputs="text",
|
118 |
+
title="Whisper Large V3: Transcribe Audio",
|
119 |
+
description=(
|
120 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
+
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
122 |
+
" of arbitrary length."
|
123 |
+
),
|
124 |
+
allow_flagging="never",
|
125 |
+
)
|
126 |
+
|
127 |
+
yt_transcribe = gr.Interface(
|
128 |
+
fn=yt_transcribe,
|
129 |
+
inputs=[
|
130 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
+
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
132 |
+
],
|
133 |
+
outputs=["html", "text"],
|
134 |
+
title="Whisper Large V3: Transcribe YouTube",
|
135 |
+
description=(
|
136 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
137 |
+
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
138 |
+
" arbitrary length."
|
139 |
+
),
|
140 |
+
allow_flagging="never",
|
141 |
+
)
|
142 |
+
|
143 |
+
with demo:
|
144 |
+
gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
|
145 |
+
|
146 |
+
demo.queue().launch(ssr_mode=False)
|