StevenChen16 commited on
Commit
aa547ad
1 Parent(s): 550cf61

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -1,17 +1,19 @@
1
- import os
2
  import torch
3
  import gradio as gr
4
  import whisperx
5
  from transformers.pipelines.audio_utils import ffmpeg_read
6
  import tempfile
7
  import gc
 
8
 
9
  # Constants
10
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
11
- BATCH_SIZE = 4
12
- COMPUTE_TYPE = "float32"
13
  FILE_LIMIT_MB = 1000
14
 
 
15
  def transcribe_audio(inputs, task):
16
  if inputs is None:
17
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
@@ -44,7 +46,7 @@ def transcribe_audio(inputs, task):
44
  torch.cuda.empty_cache()
45
 
46
  # 3. Diarize audio
47
- diarize_model = whisperx.DiarizationPipeline(use_auth_token="YOUR_HF_TOKEN", device=DEVICE)
48
  diarize_segments = diarize_model(audio)
49
 
50
  # 4. Assign speaker labels
@@ -111,4 +113,4 @@ with demo:
111
  outputs=output_text
112
  )
113
 
114
- demo.queue().launch(share=True)
 
1
+ import spaces
2
  import torch
3
  import gradio as gr
4
  import whisperx
5
  from transformers.pipelines.audio_utils import ffmpeg_read
6
  import tempfile
7
  import gc
8
+ import os
9
 
10
  # Constants
11
  DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
12
+ BATCH_SIZE = 4 # reduce if low on GPU mem
13
+ COMPUTE_TYPE = "float32" # change to "int8" if low on GPU mem
14
  FILE_LIMIT_MB = 1000
15
 
16
+ @spaces.GPU
17
  def transcribe_audio(inputs, task):
18
  if inputs is None:
19
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
46
  torch.cuda.empty_cache()
47
 
48
  # 3. Diarize audio
49
+ diarize_model = whisperx.DiarizationPipeline(use_auth_token=os.environ["HF_TOKEN"], device=DEVICE)
50
  diarize_segments = diarize_model(audio)
51
 
52
  # 4. Assign speaker labels
 
113
  outputs=output_text
114
  )
115
 
116
+ demo.queue().launch(ssr_mode=False)