Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import yt_dlp as youtube_dl | |
import whisperx | |
import tempfile | |
import os | |
import torch | |
import gc | |
# WhisperX配置 | |
device = "cuda" #if torch.cuda.is_available() else "cpu" | |
batch_size = 4 | |
compute_type = "float32" | |
MODEL_NAME = "large-v3" | |
YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube files | |
# 加载WhisperX模型 | |
def load_whisperx_model(): | |
# 加载 WhisperX 模型 | |
return whisperx.load_model(MODEL_NAME, device=device, compute_type=compute_type) | |
model = load_whisperx_model() | |
def transcribe(inputs, task): | |
if inputs is None: | |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
# 加载和转录音频 | |
audio = whisperx.load_audio(inputs) | |
result = model.transcribe(audio, batch_size=batch_size) | |
print(result["segments"]) # 未对齐的文本片段 | |
# 释放资源以节省GPU内存 | |
gc.collect() | |
torch.cuda.empty_cache() | |
del model | |
# 加载对齐模型 | |
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device) | |
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False) | |
# 说话人分离 | |
diarize_model = whisperx.DiarizationPipeline(use_auth_token="your_huggingface_token", device=device) | |
result = whisperx.assign_word_speakers(diarize_model, result) | |
# 格式化输出 | |
transcript = "" | |
for segment in result['segments']: | |
speaker = segment.get('speaker', 'Unknown') | |
transcript += f"{speaker}: {segment['text']}\n" | |
return transcript | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration"] | |
if file_length > YT_LENGTH_LIMIT_S: | |
raise gr.Error("YouTube video length exceeds the 1-hour limit.") | |
ydl_opts = {"outtmpl": filename, "format": "bestaudio[ext=m4a]"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(yt_url, task): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.m4a") | |
download_yt_audio(yt_url, filepath) | |
result = transcribe(filepath, task) | |
return html_embed_str, result | |
# Gradio 界面设置 | |
demo = gr.Blocks() | |
yt_transcribe_interface = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")], | |
outputs=["html", "text"], | |
title="WhisperX: Transcribe YouTube with Speaker Diarization", | |
description="Transcribe and diarize YouTube videos with WhisperX." | |
) | |
with demo: | |
gr.TabbedInterface([yt_transcribe_interface], ["YouTube"]) | |
demo.launch() | |