Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import cv2 | |
import matplotlib.pyplot as plt | |
# Fonctions de traitement d'image | |
def load_image(image): | |
return image | |
def apply_negative(image): | |
img_np = np.array(image) | |
negative = 255 - img_np | |
return Image.fromarray(negative) | |
def grayscale(image): | |
return image.convert('L') | |
def binarize_image(image, threshold): | |
img_np = np.array(image.convert('L')) | |
_, binary = cv2.threshold(img_np, threshold, 255, cv2.THRESH_BINARY) | |
return Image.fromarray(binary) | |
def resize_image(image, width: int, height: int): | |
return image.resize((width, height)) | |
def rotate_image(image, angle): | |
return image.rotate(angle) | |
def show_histogram(image): | |
grayscale = image.convert("L") | |
plt.hist(grayscale, bins=120) | |
#hist_data = grayscale.histogram() | |
plt.figure() | |
plt.plot(hist_data) | |
plt.title("Histogramme des Niveaux de Gris") | |
plt.show() | |
def gaussian_filter(image, shape=(3,3)): | |
image = np.array(image) | |
filtered = cv2.GaussianBlur(image, shape, 0) | |
return Image.fromarray(filtered) | |
def mean_filter(image, shape=(3,3)): | |
image = np.array(image) | |
filtered = cv2.blur(image, shape) | |
return Image.fromarray(filtered) | |
def sobel_edges(image, k=5): | |
image = np.array(image.convert('L')) | |
sobel_x = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=k) | |
sobel_y = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=k) | |
sobel_combined = cv2.magnitude(sobel_x, sobel_y) | |
return Image.fromarray(np.uint8(sobel_combined)) | |
def erosion(image, noyau=(5,5), iterations=3): | |
image = np.array(image.convert("L")) | |
kernel = np.ones(noyau, np.uint8) | |
eroded_image = cv2.erode(image, kernel, iterations=iterations) | |
return Image.fromarray(eroded_image) | |
def dilatation(image, noyau=(5,5), iterations=3): | |
image = np.array(image.convert("L")) | |
kernel = np.ones(noyau, np.uint8) | |
dilated_image = cv2.dilate(image, kernel, iterations=iterations) | |
return Image.fromarray(dilated_image) | |
# Ajoutez d'autres fonctions pour l'histogramme, le filtrage, Sobel, etc. | |
# Interface Gradio | |
def image_processing(image, operation, threshold=128, width=100, height=100, angle=30, shape=(3,3), noyau=(5,5), k=5, iterations=3): | |
if operation == "Négatif": | |
return apply_negative(image) | |
elif operation == "Image en Gris": | |
return grayscale(image) | |
elif operation == "Binarisation": | |
return binarize_image(image, threshold) | |
elif operation == "Redimensionner": | |
return resize_image(image, width, height) | |
elif operation == "Rotation": | |
return rotate_image(image, angle) | |
elif operation == 'Histogramme de Gris': | |
return show_histogram(image) | |
elif operation == 'Filtre Gaussien': | |
return gaussian_filter(image, shape) | |
elif operation == 'Filtre Moyen': | |
return mean_filter(image, shape) | |
elif operation == 'Sobel Edges Extraction': | |
return sobel_edges(image, k) | |
elif operation == 'Erosion': | |
return erosion(image, noyau, iterations) | |
elif operation == 'Dilatation': | |
return dilatation(image) | |
# Ajouter d'autres conditions pour les autres opérations | |
return image | |
# Interface Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("## Projet de Traitement d'Image") | |
with gr.Row(): | |
operation = gr.Radio(["Négatif", "Image en Gris", "Binarisation", "Redimensionner", "Rotation", 'Histogramme de Gris', | |
'Filtre Gaussien', 'Filtre Moyen', 'Sobel Edges Extraction', 'Erosion', 'Dilatation'], label="Opération") | |
threshold = gr.Slider(0, 255, 128, label="Seuil de binarisation", visible=True) | |
width = gr.Number(value=100, label="Largeur", visible=True) | |
height = gr.Number(value=100, label="Hauteur", visible=True) | |
angle = gr.Slider(0, 360, 30, label="Angle de Rotation", visible=True) | |
k = gr.Number(value=5, label="k de Sobel", visible=True) | |
iterations = gr.Number(value=3, label="Nombre d'iteration pour les transformations morphologiques", visible=True) | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Charger Image") | |
image_output = gr.Image(type="pil", label="Image Modifiée") | |
submit_button = gr.Button("Appliquer") | |
submit_button.click(image_processing, inputs=[image_input, operation, threshold, width, height, angle], outputs=image_output) | |
# Lancer l'application Gradio | |
demo.launch() | |