StephanST commited on
Commit
1912fb8
1 Parent(s): 4f5e042

adding second model to app

Browse files
Files changed (1) hide show
  1. app.py +22 -6
app.py CHANGED
@@ -91,6 +91,24 @@ def process_image(session, img, colors, mosaic=False):
91
  return overlay
92
 
93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  # set cuda = true if you have an NVIDIA GPU
95
  cuda = torch.cuda.is_available()
96
 
@@ -98,7 +116,10 @@ if cuda:
98
  print("We have a GPU!")
99
  providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider']
100
 
101
- session = ort.InferenceSession('end2end.onnx', providers=providers)
 
 
 
102
 
103
 
104
  # Define colors for classes 0, 122 and 244
@@ -113,11 +134,6 @@ def load_image(uploaded_file):
113
  return None
114
 
115
 
116
- st.title("OpenLander ONNX app")
117
- st.write("Upload an image to process with the ONNX OpenLander model!")
118
- st.write("Bear in mind that this model is **much less refined** than the embedded models at the moment.")
119
-
120
-
121
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
122
  if uploaded_file is not None:
123
  img = load_image(uploaded_file)
 
91
  return overlay
92
 
93
 
94
+ st.title("OpenLander ONNX app")
95
+ st.write("Upload an image to process with the ONNX OpenLander model!")
96
+ st.write("Bear in mind that this model is **much less refined** than the embedded models at the moment.")
97
+
98
+ models = {
99
+ "Embedded model short trained: DeeplabV3+, MobilenetV2, 416px resolution": "end2end.onnx",
100
+ "Embedded model better trained: DeeplabV3+, MobilenetV2, 416px resolution": "20230608_onnx_416_mbnv2_dl3/end2end.onnx"
101
+ }
102
+
103
+
104
+
105
+
106
+
107
+ # Create a Streamlit radio button to select the desired model
108
+ selected_model = st.radio("Select a model", list(models.keys()))
109
+
110
+
111
+
112
  # set cuda = true if you have an NVIDIA GPU
113
  cuda = torch.cuda.is_available()
114
 
 
116
  print("We have a GPU!")
117
  providers = ['CUDAExecutionProvider'] if cuda else ['CPUExecutionProvider']
118
 
119
+ # Get the selected model's path
120
+ model_path = models[selected_model]
121
+
122
+ session = ort.InferenceSession(model_path, providers=providers)
123
 
124
 
125
  # Define colors for classes 0, 122 and 244
 
134
  return None
135
 
136
 
 
 
 
 
 
137
  uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png"])
138
  if uploaded_file is not None:
139
  img = load_image(uploaded_file)