Voice / app.py
Staticaliza's picture
Update app.py
58fe0e8 verified
# Imports
import gradio as gr
import spaces
import re
import torch
import torchaudio
import numpy as np
import tempfile
import click
import soundfile as sf
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (load_checkpoint, get_tokenizer, convert_char_to_pinyin, save_spectrogram)
# Pre-Initialize
DEVICE = "auto"
if DEVICE == "auto":
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
ode_method = "euler"
def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
model = CFM(
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
mel_spec_kwargs=dict(target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length),
odeint_kwargs=dict(method=ode_method),
vocab_char_map=vocab_char_map,
).to(DEVICE)
model = load_checkpoint(model, ckpt_path, DEVICE, use_ema = True)
return model
# Variables
DEFAULT_MODEL = "F5"
DEFAULT_REMOVE_SILENCES = True
DEFAULT_STEPS = 32
DEFAULT_SPEED = 1
DEFAULT_CROSS_FADE = 0.15
target_rms = 0.1
cfg_strength = 2.0
sway_sampling_coef = -1.0
silence_offset = 25
silence_min_len = 500
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
F5TTS_ema_model = load_model("F5-TTS", "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
E2TTS_ema_model = load_model("E2-TTS", "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)
css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
# Functions
@spaces.GPU(duration=30)
def infer_batch(input_batches, reference_audio, reference_input, model_choice=DEFAULT_MODEL, remove_silences=DEFAULT_REMOVE_SILENCES, steps=DEFAULT_STEPS, speed=DEFAULT_SPEED, cross_fade=DEFAULT_CROSS_FADE):
if model_choice == "F5":
ema_model = F5TTS_ema_model
elif model_choice == "E2":
ema_model = E2TTS_ema_model
print("Waiting for inference...")
audio, sr = reference_audio
if audio.shape[0] > 1:
audio = torch.mean(audio, dim=0, keepdim=True)
rms = torch.sqrt(torch.mean(torch.square(audio)))
if rms < target_rms:
audio = audio * target_rms / rms
if sr != target_sample_rate:
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
audio = resampler(audio)
audio = audio.to(DEVICE)
generated_waves = []
if len(reference_input[-1].encode('utf-8')) == 1:
reference_input = reference_input + " "
print("Inferencing each batch...")
for i, input in enumerate(input_batches):
text_list = [reference_input + input]
final_text_list = convert_char_to_pinyin(text_list)
reference_audio_len = audio.shape[-1] // hop_length
zh_pause_punc = r"。,、;:?!"
reference_input_len = len(reference_input.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, reference_input))
input_len = len(input.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, input))
duration = reference_audio_len + int(reference_audio_len / reference_input_len * input_len / speed)
# Inference
with torch.inference_mode():
generated, _ = ema_model.sample(cond=audio, text=final_text_list, duration=duration, steps=steps, cfg_strength=cfg_strength, sway_sampling_coef=sway_sampling_coef)
generated = generated[:, reference_audio_len:, :]
generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
generated_wave = vocos.decode(generated_mel_spec.cpu())
if rms < target_rms:
generated_wave = generated_wave * rms / target_rms
generated_wave = generated_wave.squeeze().cpu().numpy()
generated_waves.append(generated_wave)
# Handle combining generated waves with cross-fading
print("Handling combining and cross-fading...")
if cross_fade <= 0:
final_wave = np.concatenate(generated_waves)
else:
final_wave = generated_waves[0]
for i in range(1, len(generated_waves)):
prev_wave = final_wave
next_wave = generated_waves[i]
cross_fade_samples = int(cross_fade * target_sample_rate)
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
if cross_fade_samples <= 0:
final_wave = np.concatenate([prev_wave, next_wave])
continue
prev_overlap = prev_wave[-cross_fade_samples:]
next_overlap = next_wave[:cross_fade_samples]
fade_out = np.linspace(1, 0, cross_fade_samples)
fade_in = np.linspace(0, 1, cross_fade_samples)
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
new_wave = np.concatenate([prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]])
final_wave = new_wave
# Handle removing silences
print("Handling removing silences...")
if remove_silences:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
sf.write(f.name, final_wave, target_sample_rate)
aseg = AudioSegment.from_file(f.name)
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=silence_min_len, silence_thresh=aseg.dBFS - silence_offset, keep_silence=250)
non_silent_wave = AudioSegment.empty()
for seg in non_silent_segs:
non_silent_wave += seg
aseg = non_silent_wave
aseg.export(f.name, format="wav")
final_wave, _ = torchaudio.load(f.name)
final_wave = final_wave.squeeze().cpu().numpy()
print("Done!")
return (target_sample_rate, final_wave)
@spaces.GPU(duration=30)
def infer(input, reference_audio, reference_input, model_choice=DEFAULT_MODEL, remove_silences=DEFAULT_REMOVE_SILENCES, steps=DEFAULT_STEPS, speed=DEFAULT_SPEED, cross_fade=DEFAULT_CROSS_FADE):
print("Modifying reference audio...")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
aseg = AudioSegment.from_file(reference_audio)
audio_duration = len(aseg)
if audio_duration > 15000:
gr.Warning("Audio is over 15s, clipping to only first 15s.")
aseg = aseg[:15000]
aseg.export(f.name, format="wav")
ref_audio = f.name
# Ensure it ends with period.
print("Modifying reference input...")
if not reference_input.endswith(". "):
if reference_input.endswith("."):
reference_input += " "
else:
reference_input += ". "
print("Loading reference audio...")
audio, sr = torchaudio.load(ref_audio)
# Split input into chunks
print("--------------------------------------------- INPUT")
print(f"Input: {input}")
print(f"Reference Input: {reference_input}")
print(f"Parameters: {model_choice}, {remove_silences}, {steps}, {speed}, {cross_fade}")
print("---------------------------------------------------")
max_chars = int(len(reference_input.encode('utf-8')) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
input_batches = chunk_text(input, max_chars=max_chars)
print(f"------------------------------------------ BATCHES")
for i, batch_text in enumerate(input_batches):
print(f" {i}: ", batch_text)
print("---------------------------------------------------")
return infer_batch(input_batches, (audio, sr), reference_input, model_choice, remove_silences, steps, speed, cross_fade)
def chunk_text(text, max_chars=135):
chunks = []
current_chunk = ""
# Split input into sentences with punctuations
sentences = re.split(r'(?<=[;:,.!?])\s+|(?<=[;:,。!?])', text)
for sentence in sentences:
if len(current_chunk.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
current_chunk += sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = sentence + " " if sentence and len(sentence[-1].encode('utf-8')) == 1 else sentence
if current_chunk:
chunks.append(current_chunk.strip())
print("-------------------------------------------- CHUNKS")
print(chunks)
print("---------------------------------------------------")
return chunks
def cloud():
print("[CLOUD] | Space maintained.")
# Initialize
with gr.Blocks(css=css) as main:
with gr.Column():
gr.Markdown("🪄 Speak text to audio.")
with gr.Column():
input = gr.Textbox(lines=1, value="", label="Input")
reference_audio = gr.Audio(sources="upload", type="filepath", label="Reference Audio")
reference_input = gr.Textbox(lines=1, value="", label="Reference Text")
model_choice = gr.Radio(["F5", "E2"], label="TTS Model", value=DEFAULT_MODEL)
remove_silences = gr.Checkbox(value=DEFAULT_REMOVE_SILENCES, label="Remove Silences")
steps = gr.Slider(minimum=1, maximum=64, value=DEFAULT_STEPS, step=1, label="Steps")
speed = gr.Slider(minimum=0.3, maximum=2.0, value=DEFAULT_SPEED, step=0.1, label="Speed")
cross_fade = gr.Slider(minimum=0.0, maximum=1.0, value=DEFAULT_CROSS_FADE, step=0.01, label="Audio Cross-Fade Duration Between Sentences")
submit = gr.Button("▶")
maintain = gr.Button("☁️")
with gr.Column():
output = gr.Audio(label="Output")
submit.click(infer, inputs=[input, reference_audio, reference_input, model_choice, remove_silences, steps, speed, cross_fade], outputs=output, queue=False)
maintain.click(cloud, inputs=[], outputs=[], queue=False)
main.launch(show_api=True)