Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import os | |
import json | |
import re | |
API_TOKEN = os.environ.get("API_TOKEN") | |
KEY = os.environ.get("KEY") | |
SPECIAL_SYMBOLS_AI = ["ㅤ", "ㅤ"] | |
SPECIAL_SYMBOLS_USER = ["⠀", "⠀"] # ["‹", "›"] ['"', '"'] | |
DEFAULT_INPUT = "User: Hi!" | |
DEFAULT_WRAP = "Statical: %s" | |
DEFAULT_INSTRUCTION = "Conversation: Statical is a helpful chatbot who is communicating with people." | |
DEFAULT_STOPS = '["ㅤ", "⠀"]' # '["‹", "›"]' '[\"\\\"\"]' | |
API_ENDPOINTS = { | |
"Falcon*": "tiiuae/falcon-180B-chat", | |
"Llama*": "meta-llama/Llama-2-70b-chat-hf", | |
"Mistral": "mistralai/Mistral-7B-v0.1", | |
"Mistral_Chat": "mistralai/Mistral-7B-Instruct-v0.1", | |
"Xistral_Chat": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
"CodeLlama*": "codellama/CodeLlama-70b-Instruct-hf", | |
"RX": "esab-xrbd/skcirbatad"[::-1], | |
"CH": "sulp-r-dnammoc-ia4c/IAroFerehoC"[::-1], | |
"MX": "QWA-1.0v-B22x8-lartxiM/ytinummoc-lartsim"[::-1], | |
"ZE": "1.0v-b53A-b141-opro-ryhpez/4HecaFgnigguH"[::-1], | |
"LL": "meta-llama/Meta-Llama-3-70B-Instruct"[::-1], | |
} | |
CHOICES = [] | |
CLIENTS = {} | |
for model_name, model_endpoint in API_ENDPOINTS.items(): | |
CHOICES.append(model_name) | |
CLIENTS[model_name] = InferenceClient(model_endpoint, headers = { "Authorization": f"Bearer {API_TOKEN}" }) | |
def format(instruction, history, input, wrap): | |
sy_la, sy_ra = SPECIAL_SYMBOLS_AI[0], SPECIAL_SYMBOLS_AI[1] | |
sy_l, sy_r = SPECIAL_SYMBOLS_USER[0], SPECIAL_SYMBOLS_USER[1] | |
wrapped_input = wrap % ("") | |
formatted_history = "".join(f"{sy_l}{message[0]}{sy_r}{sy_la}{message[1]}{sy_la}" for message in history) | |
formatted_input = f"{sy_la}{instruction}{sy_ra}{formatted_history}{sy_l}{input}{sy_r}{sy_la}" | |
return f"{formatted_input}{wrapped_input}", formatted_input | |
def predict(access_key, instruction, history, input, wrap, model, temperature, top_p, top_k, rep_p, max_tokens, stop_seqs, seed): | |
if (access_key != KEY): | |
print(">>> MODEL FAILED: Input: " + input + ", Attempted Key: " + access_key) | |
return ("[UNAUTHORIZED ACCESS]", input, []); | |
instruction = instruction or DEFAULT_INSTRUCTION | |
history = history or [] | |
input = input or "" | |
wrap = wrap or "" | |
stop_seqs = stop_seqs or DEFAULT_STOPS | |
stops = json.loads(stop_seqs) | |
formatted_input, formatted_input_base = format(instruction, history, input, wrap) | |
print(seed) | |
print(formatted_input) | |
print(model) | |
response = CLIENTS[model].text_generation( | |
formatted_input, | |
temperature = temperature, | |
max_new_tokens = max_tokens, | |
top_p = top_p, | |
top_k = top_k, | |
repetition_penalty = rep_p, | |
stop_sequences = stops, | |
do_sample = True, | |
seed = seed, | |
stream = False, | |
details = False, | |
return_full_text = False | |
) | |
result = wrap % (response) | |
for stop in stops: | |
result = result.split(stop, 1)[0] | |
for symbol in stops: | |
result = result.replace(symbol, '') | |
history = history + [[input, result]] | |
print(f"---\nUSER: {input}\nBOT: {result}\n---") | |
return (result, input, history) | |
def clear_history(): | |
print(">>> HISTORY CLEARED!") | |
return [] | |
def maintain_cloud(): | |
print(">>> SPACE MAINTAINED!") | |
return ("SUCCESS!", "SUCCESS!") | |
with gr.Blocks() as demo: | |
with gr.Row(variant = "panel"): | |
gr.Markdown("✡️ This is a private LLM Space owned within STC Holdings!") | |
with gr.Row(): | |
with gr.Column(): | |
history = gr.Chatbot(label = "History", elem_id = "chatbot") | |
input = gr.Textbox(label = "Input", value = DEFAULT_INPUT, lines = 2) | |
wrap = gr.Textbox(label = "Wrap", value = DEFAULT_WRAP, lines = 1) | |
instruction = gr.Textbox(label = "Instruction", value = DEFAULT_INSTRUCTION, lines = 4) | |
access_key = gr.Textbox(label = "Access Key", lines = 1) | |
run = gr.Button("▶") | |
clear = gr.Button("🗑️") | |
cloud = gr.Button("☁️") | |
with gr.Column(): | |
model = gr.Dropdown(choices = CHOICES, value = next(iter(API_ENDPOINTS)), interactive = True, label = "Model") | |
temperature = gr.Slider( minimum = 0, maximum = 2, value = 1, step = 0.01, interactive = True, label = "Temperature" ) | |
top_p = gr.Slider( minimum = 0.01, maximum = 0.99, value = 0.95, step = 0.01, interactive = True, label = "Top P" ) | |
top_k = gr.Slider( minimum = 1, maximum = 2048, value = 50, step = 1, interactive = True, label = "Top K" ) | |
rep_p = gr.Slider( minimum = 0.01, maximum = 2, value = 1.2, step = 0.01, interactive = True, label = "Repetition Penalty" ) | |
max_tokens = gr.Slider( minimum = 1, maximum = 2048, value = 32, step = 64, interactive = True, label = "Max New Tokens" ) | |
stop_seqs = gr.Textbox( value = DEFAULT_STOPS, interactive = True, label = "Stop Sequences ( JSON Array / 4 Max )" ) | |
seed = gr.Slider( minimum = 0, maximum = 9007199254740991, value = 42, step = 1, interactive = True, label = "Seed" ) | |
with gr.Row(): | |
with gr.Column(): | |
output = gr.Textbox(label = "Output", value = "", lines = 50) | |
run.click(predict, inputs = [access_key, instruction, history, input, wrap, model, temperature, top_p, top_k, rep_p, max_tokens, stop_seqs, seed], outputs = [output, input, history], queue = False) | |
clear.click(clear_history, [], history, queue = False) | |
cloud.click(maintain_cloud, inputs = [], outputs = [input, output], queue = False) | |
demo.launch(show_api = True) |