|
|
|
import gradio as gr |
|
import threading |
|
import requests |
|
import random |
|
import spaces |
|
import torch |
|
import uuid |
|
import json |
|
import os |
|
import numpy as np |
|
|
|
from huggingface_hub import hf_hub_download |
|
from diffusers import DiffusionPipeline |
|
from transformers import pipeline |
|
from PIL import Image |
|
|
|
|
|
DEVICE = "auto" |
|
if DEVICE == "auto": |
|
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
print(f"[SYSTEM] | Using {DEVICE} type compute device.") |
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
MAX_SEED = 9007199254740991 |
|
DEFAULT_INPUT = "" |
|
DEFAULT_NEGATIVE_INPUT = "(bad, ugly, amputation, abstract, blur, deformed, distorted, disfigured, disconnected, mutation, mutated, low quality, lowres), unfinished, text, signature, watermark, (limbs, legs, feet, arms, hands), (porn, nude, naked, nsfw)" |
|
DEFAULT_MODEL = "Default" |
|
DEFAULT_HEIGHT = 1024 |
|
DEFAULT_WIDTH = 1024 |
|
|
|
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {HF_TOKEN}" } |
|
|
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
h1{text-align:center} |
|
footer { |
|
visibility: hidden |
|
} |
|
''' |
|
|
|
repo_nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection") |
|
|
|
repo_default = DiffusionPipeline.from_pretrained("fluently/Fluently-XL-Final", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False) |
|
repo_default.load_lora_weights("ehristoforu/dalle-3-xl-v2", adapter_name="default_base") |
|
repo_default.load_lora_weights("artificialguybr/PixelArtRedmond", adapter_name="pixel_base") |
|
repo_default.load_lora_weights("nerijs/pixel-art-xl", adapter_name="pixel_base_2") |
|
|
|
repo_pro = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_safetensors=True) |
|
repo_pro.load_lora_weights(hf_hub_download("alimama-creative/FLUX.1-Turbo-Alpha", "diffusion_pytorch_model.safetensors")) |
|
|
|
repo_customs = { |
|
"Default": repo_default, |
|
"Realistic": DiffusionPipeline.from_pretrained("ehristoforu/Visionix-alpha", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), |
|
"Anime": DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.1", torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False), |
|
"Pixel": repo_default, |
|
"Pro": repo_pro, |
|
} |
|
|
|
|
|
def save_image(img, seed): |
|
name = f"{seed}-{uuid.uuid4()}.png" |
|
img.save(name) |
|
return name |
|
|
|
def get_seed(seed): |
|
seed = seed.strip() |
|
if seed.isdigit(): |
|
return int(seed) |
|
else: |
|
return random.randint(0, MAX_SEED) |
|
|
|
@spaces.GPU(duration=30) |
|
def generate(input=DEFAULT_INPUT, filter_input="", negative_input=DEFAULT_NEGATIVE_INPUT, model=DEFAULT_MODEL, height=DEFAULT_HEIGHT, width=DEFAULT_WIDTH, steps=1, guidance=0, number=1, seed=None, height_buffer=DEFAULT_HEIGHT, width_buffer=DEFAULT_WIDTH): |
|
|
|
repo = repo_customs[model or "Default"] |
|
filter_input = filter_input or "" |
|
negative_input = negative_input or DEFAULT_NEGATIVE_INPUT |
|
steps_set = steps |
|
guidance_set = guidance |
|
seed = get_seed(seed) |
|
|
|
print(input, filter_input, negative_input, model, height, width, steps, guidance, number, seed) |
|
|
|
if model == "Realistic": |
|
steps_set = 25 |
|
guidance_set = 7 |
|
elif model == "Anime": |
|
steps_set = 25 |
|
guidance_set = 7 |
|
elif model == "Pixel": |
|
steps_set = 10 |
|
guidance_set = 1.5 |
|
repo.set_adapters(["pixel_base", "pixel_base_2"], adapter_weights=[1, 1]) |
|
elif model == "Pro": |
|
steps_set = 8 |
|
guidance_set = 3.5 |
|
else: |
|
steps_set = 25 |
|
guidance_set = 7 |
|
repo.set_adapters(["default_base"], adapter_weights=[0.7]) |
|
|
|
if not steps: |
|
steps = steps_set |
|
if not guidance: |
|
guidance = guidance_set |
|
|
|
print(steps, guidance) |
|
|
|
repo.to(DEVICE) |
|
|
|
parameters = { |
|
"prompt": input, |
|
"height": height, |
|
"width": width, |
|
"num_inference_steps": steps, |
|
"guidance_scale": guidance, |
|
"num_images_per_prompt": number, |
|
"generator": torch.Generator().manual_seed(seed), |
|
"output_type":"pil", |
|
} |
|
|
|
if model != "Pro": |
|
parameters["negative_prompt"] = filter_input + negative_input |
|
|
|
images = repo(**parameters).images |
|
image_paths = [save_image(img, seed) for img in images] |
|
|
|
print(image_paths) |
|
|
|
nsfw_prediction = repo_nsfw_classifier(image_paths[0]) |
|
|
|
print(nsfw_prediction) |
|
|
|
buffer_image = images[0].convert("RGBA").resize((width_buffer, height_buffer)) |
|
|
|
image_array = np.array(buffer_image) |
|
pixel_data = image_array.flatten().tolist() |
|
|
|
buffer_json = json.dumps(pixel_data) |
|
|
|
return image_paths, {item['label']: round(item['score'], 3) for item in nsfw_prediction}, buffer_json |
|
|
|
def cloud(): |
|
print("[CLOUD] | Space maintained.") |
|
|
|
@spaces.GPU(duration=0.1) |
|
def gpu(): |
|
print("[GPU] | Fetched GPU token.") |
|
|
|
|
|
with gr.Blocks(css=css) as main: |
|
with gr.Column(): |
|
gr.Markdown("🪄 Generate high quality images in all styles.") |
|
|
|
with gr.Column(): |
|
input = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Input") |
|
filter_input = gr.Textbox(lines=1, value="", label="Input Filter") |
|
negative_input = gr.Textbox(lines=1, value=DEFAULT_NEGATIVE_INPUT, label="Input Negative") |
|
model = gr.Dropdown(choices=repo_customs.keys(), value="Default", label="Model") |
|
height = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Height") |
|
width = gr.Slider(minimum=8, maximum=2160, step=1, value=DEFAULT_WIDTH, label="Width") |
|
steps = gr.Slider(minimum=1, maximum=100, step=1, value=25, label="Steps") |
|
guidance = gr.Slider(minimum=0, maximum=100, step=0.1, value=5, label = "Guidance") |
|
number = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number") |
|
seed = gr.Textbox(lines=1, value="", label="Seed (Blank for random)") |
|
height_buffer = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_HEIGHT, label="Buffer Height") |
|
width_buffer = gr.Slider(minimum=1, maximum=2160, step=1, value=DEFAULT_WIDTH, label="uffer Width") |
|
submit = gr.Button("▶") |
|
maintain = gr.Button("☁️") |
|
get_gpu = gr.Button("💻") |
|
|
|
with gr.Column(): |
|
output = gr.Gallery(columns=1, label="Image") |
|
output_2 = gr.Label() |
|
output_3 = gr.Textbox(lines=1, value="", label="Buffer") |
|
|
|
submit.click(generate, inputs=[input, filter_input, negative_input, model, height, width, steps, guidance, number, seed, height_buffer, width_buffer], outputs=[output, output_2, output_3], queue=False) |
|
maintain.click(cloud, inputs=[], outputs=[], queue=False) |
|
get_gpu.click(gpu, inputs=[], outputs=[], queue=False) |
|
|
|
main.launch(show_api=True) |