doevent commited on
Commit
e4f78ee
1 Parent(s): 3f9d341

Delete rrdbnet_arch.py

Browse files
Files changed (1) hide show
  1. rrdbnet_arch.py +0 -121
rrdbnet_arch.py DELETED
@@ -1,121 +0,0 @@
1
- import torch
2
- from torch import nn as nn
3
- from torch.nn import functional as F
4
-
5
- from arch_util import default_init_weights, make_layer, pixel_unshuffle
6
-
7
-
8
- class ResidualDenseBlock(nn.Module):
9
- """Residual Dense Block.
10
-
11
- Used in RRDB block in ESRGAN.
12
-
13
- Args:
14
- num_feat (int): Channel number of intermediate features.
15
- num_grow_ch (int): Channels for each growth.
16
- """
17
-
18
- def __init__(self, num_feat=64, num_grow_ch=32):
19
- super(ResidualDenseBlock, self).__init__()
20
- self.conv1 = nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
21
- self.conv2 = nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
22
- self.conv3 = nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
23
- self.conv4 = nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
24
- self.conv5 = nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
25
-
26
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
27
-
28
- # initialization
29
- default_init_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
30
-
31
- def forward(self, x):
32
- x1 = self.lrelu(self.conv1(x))
33
- x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
34
- x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
35
- x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
36
- x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
37
- # Emperically, we use 0.2 to scale the residual for better performance
38
- return x5 * 0.2 + x
39
-
40
-
41
- class RRDB(nn.Module):
42
- """Residual in Residual Dense Block.
43
-
44
- Used in RRDB-Net in ESRGAN.
45
-
46
- Args:
47
- num_feat (int): Channel number of intermediate features.
48
- num_grow_ch (int): Channels for each growth.
49
- """
50
-
51
- def __init__(self, num_feat, num_grow_ch=32):
52
- super(RRDB, self).__init__()
53
- self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
54
- self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
55
- self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
56
-
57
- def forward(self, x):
58
- out = self.rdb1(x)
59
- out = self.rdb2(out)
60
- out = self.rdb3(out)
61
- # Emperically, we use 0.2 to scale the residual for better performance
62
- return out * 0.2 + x
63
-
64
-
65
- class RRDBNet(nn.Module):
66
- """Networks consisting of Residual in Residual Dense Block, which is used
67
- in ESRGAN.
68
-
69
- ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks.
70
-
71
- We extend ESRGAN for scale x2 and scale x1.
72
- Note: This is one option for scale 1, scale 2 in RRDBNet.
73
- We first employ the pixel-unshuffle (an inverse operation of pixelshuffle to reduce the spatial size
74
- and enlarge the channel size before feeding inputs into the main ESRGAN architecture.
75
-
76
- Args:
77
- num_in_ch (int): Channel number of inputs.
78
- num_out_ch (int): Channel number of outputs.
79
- num_feat (int): Channel number of intermediate features.
80
- Default: 64
81
- num_block (int): Block number in the trunk network. Defaults: 23
82
- num_grow_ch (int): Channels for each growth. Default: 32.
83
- """
84
-
85
- def __init__(self, num_in_ch, num_out_ch, scale=4, num_feat=64, num_block=23, num_grow_ch=32):
86
- super(RRDBNet, self).__init__()
87
- self.scale = scale
88
- if scale == 2:
89
- num_in_ch = num_in_ch * 4
90
- elif scale == 1:
91
- num_in_ch = num_in_ch * 16
92
- self.conv_first = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
93
- self.body = make_layer(RRDB, num_block, num_feat=num_feat, num_grow_ch=num_grow_ch)
94
- self.conv_body = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
95
- # upsample
96
- self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
97
- self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
98
- if scale == 8:
99
- self.conv_up3 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
100
- self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
101
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
102
-
103
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
104
-
105
- def forward(self, x):
106
- if self.scale == 2:
107
- feat = pixel_unshuffle(x, scale=2)
108
- elif self.scale == 1:
109
- feat = pixel_unshuffle(x, scale=4)
110
- else:
111
- feat = x
112
- feat = self.conv_first(feat)
113
- body_feat = self.conv_body(self.body(feat))
114
- feat = feat + body_feat
115
- # upsample
116
- feat = self.lrelu(self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
117
- feat = self.lrelu(self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
118
- if self.scale == 8:
119
- feat = self.lrelu(self.conv_up3(F.interpolate(feat, scale_factor=2, mode='nearest')))
120
- out = self.conv_last(self.lrelu(self.conv_hr(feat)))
121
- return out