Spaces:
Sleeping
Sleeping
Eason Lu
commited on
Commit
•
22b6efb
1
Parent(s):
c7ce724
TO DO: need debug timestamp
Browse filesFormer-commit-id: c8b5a96d8beab6123216fef6e59b9d828904dba9
- .gitignore +1 -0
- SRT.py +94 -11
- __pycache__/srt2ass.cpython-38.pyc +0 -0
- pipeline.py +99 -73
.gitignore
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
/downloads
|
2 |
/results
|
3 |
.DS_Store
|
|
|
4 |
test.py
|
5 |
test.srt
|
6 |
test.txt
|
|
|
1 |
/downloads
|
2 |
/results
|
3 |
.DS_Store
|
4 |
+
/__pycache__
|
5 |
test.py
|
6 |
test.srt
|
7 |
test.txt
|
SRT.py
CHANGED
@@ -3,14 +3,31 @@ import os
|
|
3 |
import whisper
|
4 |
|
5 |
class SRT_segment(object):
|
6 |
-
def __init__(self,
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
class SRT_script():
|
16 |
def __init__(self, segments) -> None:
|
@@ -18,13 +35,79 @@ class SRT_script():
|
|
18 |
for seg in segments:
|
19 |
srt_seg = SRT_segment(seg)
|
20 |
self.segments.append(srt_seg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
pass
|
25 |
|
26 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# write srt file to path
|
|
|
|
|
28 |
pass
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
3 |
import whisper
|
4 |
|
5 |
class SRT_segment(object):
|
6 |
+
def __init__(self, *args) -> None:
|
7 |
+
if isinstance(args[0], dict):
|
8 |
+
segment = args[0]
|
9 |
+
self.start_time_str = str(0)+str(timedelta(seconds=int(segment['start'])))+',000'
|
10 |
+
self.end_time_str = str(0)+str(timedelta(seconds=int(segment['end'])))+',000'
|
11 |
+
self.segment_id = segment['id']+1
|
12 |
+
self.source_text = segment['text']
|
13 |
+
self.duration = f"{self.start_time_str} --> {self.end_time_str}"
|
14 |
+
self.translation = ""
|
15 |
+
elif isinstance(args[0], list):
|
16 |
+
self.segment_id = args[0][0]
|
17 |
+
self.source_text = args[0][2]
|
18 |
+
self.duration = args[0][1]
|
19 |
+
self.start_time_str = self.duration.split("-->")[0]
|
20 |
+
self.end_time_str = self.duration.split("-->")[1]
|
21 |
+
self.translation = ""
|
22 |
+
|
23 |
+
def __str__(self) -> str:
|
24 |
+
return f'{self.segment_id}\n{self.duration}\n{self.source_text}\n\n'
|
25 |
+
|
26 |
+
def get_trans_str(self) -> str:
|
27 |
+
return f'{self.segment_id}\n{self.duration}\n{self.translation}\n\n'
|
28 |
+
|
29 |
+
def get_bilingual_str(self) -> str:
|
30 |
+
return f'{self.segment_id}\n{self.duration}\n{self.source_text}\n{self.translation}\n\n'
|
31 |
|
32 |
class SRT_script():
|
33 |
def __init__(self, segments) -> None:
|
|
|
35 |
for seg in segments:
|
36 |
srt_seg = SRT_segment(seg)
|
37 |
self.segments.append(srt_seg)
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def parse_from_srt_file(cls, path:str):
|
41 |
+
with open(path, 'r', encoding="utf-8") as f:
|
42 |
+
script_lines = f.read().splitlines()
|
43 |
+
|
44 |
+
segments = []
|
45 |
+
for i in range(len(script_lines)):
|
46 |
+
if i % 4 == 0:
|
47 |
+
segments.append(list(script_lines[i:i+4]))
|
48 |
|
49 |
+
return cls(segments)
|
50 |
+
|
51 |
+
def set_translation(self, translate:str, id_range:tuple):
|
52 |
+
start_seg_id = id_range[0]
|
53 |
+
end_seg_id = id_range[1]
|
54 |
+
|
55 |
+
lines = translate.split('\n\n')
|
56 |
+
print(id_range)
|
57 |
+
print(translate)
|
58 |
+
# print(len(translate))
|
59 |
+
|
60 |
+
for i, seg in enumerate(self.segments[start_seg_id-1:end_seg_id]):
|
61 |
+
seg.translation = lines[i]
|
62 |
pass
|
63 |
|
64 |
+
def get_source_only(self):
|
65 |
+
# return a string with pure source text
|
66 |
+
result = ""
|
67 |
+
for seg in self.segments:
|
68 |
+
result+=f'{seg.source_text}\n\n'
|
69 |
+
|
70 |
+
return result
|
71 |
+
|
72 |
+
def reform_src_str(self):
|
73 |
+
result = ""
|
74 |
+
for seg in self.segments:
|
75 |
+
result += str(seg)
|
76 |
+
return result
|
77 |
+
|
78 |
+
def reform_trans_str(self):
|
79 |
+
result = ""
|
80 |
+
for seg in self.segments:
|
81 |
+
result += seg.get_trans_str()
|
82 |
+
return result
|
83 |
+
|
84 |
+
def form_bilingual_str(self):
|
85 |
+
result = ""
|
86 |
+
for seg in self.segments:
|
87 |
+
result += seg.get_bilingual_str()
|
88 |
+
return result
|
89 |
+
|
90 |
+
def write_srt_file_src(self, path:str):
|
91 |
# write srt file to path
|
92 |
+
with open(path, "w", encoding='utf-8') as f:
|
93 |
+
f.write(self.reform_src_str())
|
94 |
pass
|
95 |
|
96 |
+
def write_srt_file_translate(self, path:str):
|
97 |
+
with open(path, "w", encoding='utf-8') as f:
|
98 |
+
f.write(self.reform_trans_str())
|
99 |
+
pass
|
100 |
+
|
101 |
+
def write_srt_file_bilingual(self, path:str):
|
102 |
+
with open(path, "w", encoding='utf-8') as f:
|
103 |
+
f.write(self.form_bilingual_str())
|
104 |
+
pass
|
105 |
+
|
106 |
+
def correct_with_force_term():
|
107 |
+
# force term correction
|
108 |
+
|
109 |
+
pass
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
|
__pycache__/srt2ass.cpython-38.pyc
DELETED
Binary file (13.9 kB)
|
|
pipeline.py
CHANGED
@@ -4,6 +4,8 @@ import argparse
|
|
4 |
import os
|
5 |
import whisper
|
6 |
from tqdm import tqdm
|
|
|
|
|
7 |
|
8 |
parser = argparse.ArgumentParser()
|
9 |
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
|
@@ -84,96 +86,120 @@ if not os.path.exists(f'{RESULT_PATH}/{VIDEO_NAME}'):
|
|
84 |
|
85 |
# Instead of using the script_en variable directly, we'll use script_input
|
86 |
srt_file_en = args.srt_file
|
|
|
87 |
if srt_file_en is not None:
|
88 |
-
with open(srt_file_en, 'r', encoding='utf-8') as f:
|
89 |
-
|
|
|
|
|
90 |
else:
|
91 |
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
|
92 |
srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
|
93 |
if not os.path.exists(srt_file_en):
|
|
|
94 |
# use OpenAI API for transcribe
|
95 |
# transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
96 |
|
97 |
# use local whisper model
|
98 |
-
model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
|
|
|
|
|
|
|
|
|
99 |
transcript = model.transcribe(audio_path)
|
|
|
|
|
|
|
|
|
100 |
|
101 |
#Write SRT file
|
102 |
-
|
103 |
-
|
104 |
-
with open(srt_file_en, 'w', encoding="utf-8") as
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
script_en = f.read()
|
111 |
-
script_input = script_en
|
112 |
|
113 |
if not args.only_srt:
|
114 |
from srt2ass import srt2ass
|
115 |
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
|
116 |
print('ASS subtitle saved as: ' + assSub_en)
|
117 |
|
118 |
-
# force translate the starcraft2 term into chinese according to the dict
|
119 |
-
# TODO: shortcut translation i.e. VA, ob
|
120 |
-
# TODO: variety of translation
|
121 |
-
from csv import reader
|
122 |
-
import re
|
123 |
-
|
124 |
-
# read dict
|
125 |
-
with open("finetune_data/dict.csv",'r', encoding='utf-8') as f:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
def clean_timestamp(lines):
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
ready_lines = re.sub('\n', '\n ', script_input)
|
138 |
-
ready_words = ready_lines.split(" ")
|
139 |
-
i = 0
|
140 |
-
while i < len(ready_words):
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
script_input_withForceTerm = re.sub('\n ', '\n', "".join(ready_words))
|
158 |
-
|
|
|
159 |
|
160 |
# Split the video script by sentences and create chunks within the token limit
|
161 |
-
|
162 |
-
script_split =
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
script_arr.append(script.strip())
|
171 |
-
|
172 |
-
|
173 |
-
script_arr
|
|
|
|
|
|
|
174 |
|
175 |
# Translate and save
|
176 |
-
for s in tqdm(script_arr):
|
|
|
177 |
# using chatgpt model
|
178 |
if model_name == "gpt-3.5-turbo":
|
179 |
# print(s + "\n")
|
@@ -187,9 +213,8 @@ for s in tqdm(script_arr):
|
|
187 |
],
|
188 |
temperature=0.15
|
189 |
)
|
190 |
-
|
191 |
-
|
192 |
-
f.write("\n")
|
193 |
|
194 |
if model_name == "text-davinci-003":
|
195 |
prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
|
@@ -203,10 +228,11 @@ for s in tqdm(script_arr):
|
|
203 |
frequency_penalty=0.0,
|
204 |
presence_penalty=0.0
|
205 |
)
|
|
|
|
|
|
|
206 |
|
207 |
-
|
208 |
-
f.write(response['choices'][0]['text'].strip())
|
209 |
-
f.write("\n")
|
210 |
|
211 |
if not args.only_srt:
|
212 |
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
|
|
|
4 |
import os
|
5 |
import whisper
|
6 |
from tqdm import tqdm
|
7 |
+
from SRT import SRT_script
|
8 |
+
import stable_whisper
|
9 |
|
10 |
parser = argparse.ArgumentParser()
|
11 |
parser.add_argument("--link", help="youtube video link here", default=None, type=str, required=False)
|
|
|
86 |
|
87 |
# Instead of using the script_en variable directly, we'll use script_input
|
88 |
srt_file_en = args.srt_file
|
89 |
+
|
90 |
if srt_file_en is not None:
|
91 |
+
# with open(srt_file_en, 'r', encoding='utf-8') as f:
|
92 |
+
# script_input = f.read()
|
93 |
+
srt = SRT_script.parse_from_srt_file(srt_file_en)
|
94 |
+
script_input = srt.get_source_only()
|
95 |
else:
|
96 |
# using whisper to perform speech-to-text and save it in <video name>_en.txt under RESULT PATH.
|
97 |
srt_file_en = "{}/{}/{}_en.srt".format(RESULT_PATH, VIDEO_NAME, VIDEO_NAME)
|
98 |
if not os.path.exists(srt_file_en):
|
99 |
+
|
100 |
# use OpenAI API for transcribe
|
101 |
# transcript = openai.Audio.transcribe("whisper-1", audio_file)
|
102 |
|
103 |
# use local whisper model
|
104 |
+
# model = whisper.load_model("base") # using base model in local machine (may use large model on our server)
|
105 |
+
# transcript = model.transcribe(audio_path)
|
106 |
+
|
107 |
+
# use stable-whisper
|
108 |
+
model = stable_whisper.load_model('base')
|
109 |
transcript = model.transcribe(audio_path)
|
110 |
+
transcript.to_srt_vtt(srt_file_en)
|
111 |
+
transcript = transcript.to_dict()
|
112 |
+
srt = SRT_script(transcript['segments']) # read segments to SRT class
|
113 |
+
script_input = srt.get_source_only()
|
114 |
|
115 |
#Write SRT file
|
116 |
+
|
117 |
+
# from whisper.utils import WriteSRT
|
118 |
+
# with open(srt_file_en, 'w', encoding="utf-8") as f:
|
119 |
+
# writer = WriteSRT(RESULT_PATH)
|
120 |
+
# writer.write_result(transcript, f)
|
121 |
+
else:
|
122 |
+
srt = SRT_script.parse_from_srt_file(srt_file_en)
|
123 |
+
script_input = srt.get_source_only()
|
|
|
|
|
124 |
|
125 |
if not args.only_srt:
|
126 |
from srt2ass import srt2ass
|
127 |
assSub_en = srt2ass(srt_file_en, "default", "No", "Modest")
|
128 |
print('ASS subtitle saved as: ' + assSub_en)
|
129 |
|
130 |
+
# # force translate the starcraft2 term into chinese according to the dict
|
131 |
+
# # TODO: shortcut translation i.e. VA, ob
|
132 |
+
# # TODO: variety of translation
|
133 |
+
# from csv import reader
|
134 |
+
# import re
|
135 |
+
|
136 |
+
# # read dict
|
137 |
+
# with open("finetune_data/dict.csv",'r', encoding='utf-8') as f:
|
138 |
+
# csv_reader = reader(f)
|
139 |
+
# term_dict = {rows[0]:rows[1] for rows in csv_reader}
|
140 |
+
|
141 |
+
# def clean_timestamp(lines):
|
142 |
+
# new_lines = []
|
143 |
+
# strinfo = re.compile('[0-9]+\n.{25},[0-9]{3}') # 注意用4个\\\\来替换\
|
144 |
+
# new_lines = strinfo.sub('_-_', lines)
|
145 |
+
# print(new_lines)
|
146 |
+
# return new_lines
|
147 |
+
|
148 |
+
|
149 |
+
# ready_lines = re.sub('\n', '\n ', script_input)
|
150 |
+
# ready_words = ready_lines.split(" ")
|
151 |
+
# i = 0
|
152 |
+
# while i < len(ready_words):
|
153 |
+
# word = ready_words[i]
|
154 |
+
# if word[-2:] == ".\n" :
|
155 |
+
# if word[:-2].lower() in term_dict :
|
156 |
+
# new_word = word.replace(word[:-2], term_dict.get(word[:-2].lower())) + ' '
|
157 |
+
# ready_words[i] = new_word
|
158 |
+
# else :
|
159 |
+
# word += ' '
|
160 |
+
# ready_words[i] = word
|
161 |
+
# elif word.lower() in term_dict :
|
162 |
+
# new_word = word.replace(word,term_dict.get(word.lower())) + ' '
|
163 |
+
# ready_words[i] = new_word
|
164 |
+
# else :
|
165 |
+
# word += " "
|
166 |
+
# ready_words[i]= word
|
167 |
+
# i += 1
|
168 |
+
|
169 |
+
# script_input_withForceTerm = re.sub('\n ', '\n', "".join(ready_words))
|
170 |
+
|
171 |
+
srt.correct_with_force_term()
|
172 |
|
173 |
# Split the video script by sentences and create chunks within the token limit
|
174 |
+
def script_split(script_in, chunk_size = 1000):
|
175 |
+
script_split = script_in.split('\n\n')
|
176 |
+
script_arr = []
|
177 |
+
range_arr = []
|
178 |
+
start = 1
|
179 |
+
end = 0
|
180 |
+
script = ""
|
181 |
+
for sentence in script_split:
|
182 |
+
if len(script) + len(sentence) + 1 <= chunk_size:
|
183 |
+
script += sentence + '\n\n'
|
184 |
+
end+=1
|
185 |
+
else:
|
186 |
+
range_arr.append((start, end))
|
187 |
+
start = end+1
|
188 |
+
end += 1
|
189 |
+
script_arr.append(script.strip())
|
190 |
+
script = sentence + '\n\n'
|
191 |
+
if script.strip():
|
192 |
script_arr.append(script.strip())
|
193 |
+
range_arr.append((start, len(script_split)-1))
|
194 |
+
|
195 |
+
assert len(script_arr) == len(range_arr)
|
196 |
+
return script_arr, range_arr
|
197 |
+
|
198 |
+
script_arr, range_arr = script_split(script_input)
|
199 |
|
200 |
# Translate and save
|
201 |
+
for s, range in tqdm(zip(script_arr, range_arr)):
|
202 |
+
print(s)
|
203 |
# using chatgpt model
|
204 |
if model_name == "gpt-3.5-turbo":
|
205 |
# print(s + "\n")
|
|
|
213 |
],
|
214 |
temperature=0.15
|
215 |
)
|
216 |
+
|
217 |
+
translate = response['choices'][0]['message']['content'].strip()
|
|
|
218 |
|
219 |
if model_name == "text-davinci-003":
|
220 |
prompt = f"Please help me translate this into Chinese:\n\n{s}\n\n"
|
|
|
228 |
frequency_penalty=0.0,
|
229 |
presence_penalty=0.0
|
230 |
)
|
231 |
+
translate = response['choices'][0]['text'].strip()
|
232 |
+
|
233 |
+
srt.set_translation(translate, range)
|
234 |
|
235 |
+
srt.write_srt_file_translate(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt")
|
|
|
|
|
236 |
|
237 |
if not args.only_srt:
|
238 |
assSub_zh = srt2ass(f"{RESULT_PATH}/{VIDEO_NAME}/{VIDEO_NAME}_zh.srt", "default", "No", "Modest")
|