Spaces:
Sleeping
Sleeping
import argparse | |
import pandas as pd | |
from alignment import alignment | |
from scores.multi_scores import multi_scores | |
class Evaluator: | |
def __init__(self, pred_path, gt_path, eval_path, res_path): | |
self.pred_path = pred_path | |
self.gt_path = gt_path | |
self.eval_path = eval_path | |
self.res_path = res_path | |
def eval(self): | |
# Align two SRT files | |
aligned_srt = alignment(self.pred_path, self.gt_path) | |
# Get sentence scores | |
scorer = multi_scores() | |
result_data = [] | |
for (pred_s, gt_s) in aligned_srt: | |
print("pred_s.source_text: ", pred_s.source_text) | |
print("pred_s.translation: ", pred_s.translation) | |
print("gt_s.source_text: ", gt_s.source_text) | |
print("gt_s.translation: ", gt_s.translation) | |
# Check if the gt_s.translation is not empty | |
if gt_s.translation != "": | |
# gt_s.translation = " " | |
scores_dict = scorer.get_scores(pred_s.source_text, pred_s.translation, gt_s.translation) | |
else: | |
scores_dict = scorer.get_scores(pred_s.source_text, pred_s.translation, gt_s.source_text) | |
print("scores_dict: ", scores_dict) | |
scores_dict['Source'] = pred_s.source_text | |
scores_dict['Prediction'] = pred_s.translation | |
scores_dict['Ground Truth'] = gt_s.source_text | |
result_data.append(scores_dict) | |
eval_df = pd.DataFrame(result_data) | |
eval_df.to_csv(self.eval_path, index=False, columns=['Source', 'Prediction', 'Ground Truth', 'bleu_score', 'comet_score', 'llm_score', 'llm_explanation']) | |
# Get average scores | |
avg_llm = eval_df['llm_score'].mean() | |
avg_bleu = eval_df['bleu_score'].mean() | |
avg_comet = eval_df['comet_score'].mean() | |
res_data = { | |
'Metric': ['Avg LLM', 'Avg BLEU', 'Avg COMET'], | |
'Score': [avg_llm, avg_bleu, avg_comet] | |
} | |
res_df = pd.DataFrame(res_data) | |
res_df.to_csv(self.res_path, index=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Evaluate SRT files.') | |
parser.add_argument('-bi_path', default='evaluation/test5_tiny/test5_bi.srt', help='Path to predicted SRT file') | |
parser.add_argument('-zh_path', default='evaluation/test5_tiny/test5_gt.srt', help='Path to ground truth SRT file') | |
parser.add_argument('-eval_output', default='evaluation/test5_tiny/eval.csv', help='Path to eval CSV file') | |
parser.add_argument('-res_output', default='evaluation/test5_tiny/res.csv', help='Path to result CSV file') | |
args = parser.parse_args() | |
evaluator = Evaluator(args.bi_path, args.zh_path, args.eval_output, args.res_output) | |
evaluator.eval() | |
# python evaluation.py -bi_path /home/jiaenliu/project-t/results/test1/test1_bi.srt -zh_path test5_tiny/test1_gt.srt -eval_output /home/jiaenliu/project-t/evaluation/results/test1_large/eval.csv -res_output /home/jiaenliu/project-t/evaluation/results/test1_large/res.csv | |