Eason Lu
OOP migrate
61ca873
raw
history blame
21.5 kB
import os
import re
from pathlib import Path
from copy import copy, deepcopy
from csv import reader
from datetime import timedelta
import logging
import openai
from tqdm import tqdm
class SrtSegment(object):
def __init__(self, *args) -> None:
if isinstance(args[0], dict):
segment = args[0]
self.start = segment['start']
self.end = segment['end']
self.start_ms = int((segment['start'] * 100) % 100 * 10)
self.end_ms = int((segment['end'] * 100) % 100 * 10)
if self.start_ms == self.end_ms and int(segment['start']) == int(segment['end']): # avoid empty time stamp
self.end_ms += 500
self.start_time = timedelta(seconds=int(segment['start']), milliseconds=self.start_ms)
self.end_time = timedelta(seconds=int(segment['end']), milliseconds=self.end_ms)
if self.start_ms == 0:
self.start_time_str = str(0) + str(self.start_time).split('.')[0] + ',000'
else:
self.start_time_str = str(0) + str(self.start_time).split('.')[0] + ',' + \
str(self.start_time).split('.')[1][:3]
if self.end_ms == 0:
self.end_time_str = str(0) + str(self.end_time).split('.')[0] + ',000'
else:
self.end_time_str = str(0) + str(self.end_time).split('.')[0] + ',' + str(self.end_time).split('.')[1][
:3]
self.source_text = segment['text'].lstrip()
self.duration = f"{self.start_time_str} --> {self.end_time_str}"
self.translation = ""
elif isinstance(args[0], list):
self.source_text = args[0][2]
self.duration = args[0][1]
self.start_time_str = self.duration.split(" --> ")[0]
self.end_time_str = self.duration.split(" --> ")[1]
# parse the time to float
self.start_ms = int(self.start_time_str.split(',')[1]) / 10
self.end_ms = int(self.end_time_str.split(',')[1]) / 10
start_list = self.start_time_str.split(',')[0].split(':')
self.start = int(start_list[0]) * 3600 + int(start_list[1]) * 60 + int(start_list[2]) + self.start_ms / 100
end_list = self.end_time_str.split(',')[0].split(':')
self.end = int(end_list[0]) * 3600 + int(end_list[1]) * 60 + int(end_list[2]) + self.end_ms / 100
self.translation = ""
def merge_seg(self, seg):
"""
Merge the segment seg with the current segment in place.
:param seg: Another segment that is strictly next to current one.
:return: None
"""
# assert seg.start_ms == self.end_ms, f"cannot merge discontinuous segments."
self.source_text += f' {seg.source_text}'
self.translation += f' {seg.translation}'
self.end_time_str = seg.end_time_str
self.end = seg.end
self.end_ms = seg.end_ms
self.duration = f"{self.start_time_str} --> {self.end_time_str}"
def __add__(self, other):
"""
Merge the segment seg with the current segment, and return the new constructed segment.
No in-place modification.
This is used for '+' operator.
:param other: Another segment that is strictly next to added segment.
:return: new segment of the two sub-segments
"""
result = deepcopy(self)
result.merge_seg(other)
return result
def remove_trans_punc(self) -> None:
"""
remove CN punctuations in translation text
:return: None
"""
punc_cn = ",。!?"
translator = str.maketrans(punc_cn, ' ' * len(punc_cn))
self.translation = self.translation.translate(translator)
def __str__(self) -> str:
return f'{self.duration}\n{self.source_text}\n\n'
def get_trans_str(self) -> str:
return f'{self.duration}\n{self.translation}\n\n'
def get_bilingual_str(self) -> str:
return f'{self.duration}\n{self.source_text}\n{self.translation}\n\n'
class SrtScript(object):
def __init__(self, segments) -> None:
self.segments = [SrtSegment(seg) for seg in segments]
@classmethod
def parse_from_srt_file(cls, path: str):
with open(path, 'r', encoding="utf-8") as f:
script_lines = [line.rstrip() for line in f.readlines()]
segments = []
for i in range(0, len(script_lines), 4):
segments.append(list(script_lines[i:i + 4]))
return cls(segments)
def merge_segs(self, idx_list) -> SrtSegment:
"""
Merge entire segment list to a single segment
:param idx_list: List of index to merge
:return: Merged list
"""
if not idx_list:
raise NotImplementedError('Empty idx_list')
seg_result = deepcopy(self.segments[idx_list[0]])
if len(idx_list) == 1:
return seg_result
for idx in range(1, len(idx_list)):
seg_result += self.segments[idx_list[idx]]
return seg_result
def form_whole_sentence(self):
"""
Concatenate or Strip sentences and reconstruct segments list. This is because of
improper segmentation from openai-whisper.
:return: None
"""
logging.info("Forming whole sentences...")
merge_list = [] # a list of indices that should be merged e.g. [[0], [1, 2, 3, 4], [5, 6], [7]]
sentence = []
# Get each entire sentence of distinct segments, fill indices to merge_list
for i, seg in enumerate(self.segments):
if seg.source_text[-1] in ['.', '!', '?'] and len(seg.source_text) > 10 and 'vs.' not in seg.source_text:
sentence.append(i)
merge_list.append(sentence)
sentence = []
else:
sentence.append(i)
# Reconstruct segments, each with an entire sentence
segments = []
for idx_list in merge_list:
if len(idx_list) > 1:
logging.info("merging segments: %s", idx_list)
segments.append(self.merge_segs(idx_list))
self.segments = segments
def remove_trans_punctuation(self):
"""
Post-process: remove all punc after translation and split
:return: None
"""
for i, seg in enumerate(self.segments):
seg.remove_trans_punc()
logging.info("Removed punctuation in translation.")
def set_translation(self, translate: str, id_range: tuple, model, video_name, video_link=None):
start_seg_id = id_range[0]
end_seg_id = id_range[1]
src_text = ""
for i, seg in enumerate(self.segments[start_seg_id - 1:end_seg_id]):
src_text += seg.source_text
src_text += '\n\n'
def inner_func(target, input_str):
response = openai.ChatCompletion.create(
# model=model,
model="gpt-4",
messages=[
{"role": "system",
"content": "你的任务是按照要求合并或拆分句子到指定行数,你需要尽可能保证句意,但必要时可以将一句话分为两行输出"},
{"role": "system", "content": "注意:你只需要输出处理过的中文句子,如果你要输出序号,请使用冒号隔开"},
{"role": "user", "content": '请将下面的句子拆分或组合为{}句:\n{}'.format(target, input_str)}
],
temperature=0.15
)
return response['choices'][0]['message']['content'].strip()
lines = translate.split('\n\n')
if len(lines) < (end_seg_id - start_seg_id + 1):
count = 0
solved = True
while count < 5 and len(lines) != (end_seg_id - start_seg_id + 1):
count += 1
print("Solving Unmatched Lines|iteration {}".format(count))
flag = True
while flag:
flag = False
# print("translate:")
# print(translate)
try:
# print("target")
# print(end_seg_id - start_seg_id + 1)
translate = inner_func(end_seg_id - start_seg_id + 1, translate)
except Exception as e:
print("An error has occurred during solving unmatched lines:", e)
print("Retrying...")
flag = True
lines = translate.split('\n')
# print("result")
# print(len(lines))
if len(lines) < (end_seg_id - start_seg_id + 1):
solved = False
print("Failed Solving unmatched lines, Manually parse needed")
if not os.path.exists("./logs"):
os.mkdir("./logs")
if video_link:
log_file = "./logs/log_link.csv"
log_exist = os.path.exists(log_file)
with open(log_file, "a") as log:
if not log_exist:
log.write("range_of_text,iterations_solving,solved,file_length,video_link" + "\n")
log.write(str(id_range) + ',' + str(count) + ',' + str(solved) + ',' + str(
len(self.segments)) + ',' + video_link + "\n")
else:
log_file = "./logs/log_name.csv"
log_exist = os.path.exists(log_file)
with open(log_file, "a") as log:
if not log_exist:
log.write("range_of_text,iterations_solving,solved,file_length,video_name" + "\n")
log.write(str(id_range) + ',' + str(count) + ',' + str(solved) + ',' + str(
len(self.segments)) + ',' + video_name + "\n")
print(lines)
for i, seg in enumerate(self.segments[start_seg_id - 1:end_seg_id]):
# naive way to due with merge translation problem
# TODO: need a smarter solution
if i < len(lines):
if "Note:" in lines[i]: # to avoid note
lines.remove(lines[i])
max_num -= 1
if i == len(lines) - 1:
break
if lines[i][0] in [' ', '\n']:
lines[i] = lines[i][1:]
seg.translation = lines[i]
def split_seg(self, seg, text_threshold, time_threshold):
# evenly split seg to 2 parts and add new seg into self.segments
# ignore the initial comma to solve the recursion problem
if len(seg.source_text) > 2:
if seg.source_text[:2] == ', ':
seg.source_text = seg.source_text[2:]
if seg.translation[0] == ',':
seg.translation = seg.translation[1:]
source_text = seg.source_text
translation = seg.translation
# split the text based on commas
src_commas = [m.start() for m in re.finditer(',', source_text)]
trans_commas = [m.start() for m in re.finditer(',', translation)]
if len(src_commas) != 0:
src_split_idx = src_commas[len(src_commas) // 2] if len(src_commas) % 2 == 1 else src_commas[
len(src_commas) // 2 - 1]
else:
src_space = [m.start() for m in re.finditer(' ', source_text)]
if len(src_space) > 0:
src_split_idx = src_space[len(src_space) // 2] if len(src_space) % 2 == 1 else src_space[
len(src_space) // 2 - 1]
else:
src_split_idx = 0
if len(trans_commas) != 0:
trans_split_idx = trans_commas[len(trans_commas) // 2] if len(trans_commas) % 2 == 1 else trans_commas[
len(trans_commas) // 2 - 1]
else:
trans_split_idx = len(translation) // 2
# to avoid split English word
for i in range(trans_split_idx, len(translation)):
if not translation[i].encode('utf-8').isalpha():
trans_split_idx = i
break
# split the time duration based on text length
time_split_ratio = trans_split_idx / (len(seg.translation) - 1)
src_seg1 = source_text[:src_split_idx]
src_seg2 = source_text[src_split_idx:]
trans_seg1 = translation[:trans_split_idx]
trans_seg2 = translation[trans_split_idx:]
start_seg1 = seg.start
end_seg1 = start_seg2 = seg.start + (seg.end - seg.start) * time_split_ratio
end_seg2 = seg.end
seg1_dict = {}
seg1_dict['text'] = src_seg1
seg1_dict['start'] = start_seg1
seg1_dict['end'] = end_seg1
seg1 = SrtSegment(seg1_dict)
seg1.translation = trans_seg1
seg2_dict = {}
seg2_dict['text'] = src_seg2
seg2_dict['start'] = start_seg2
seg2_dict['end'] = end_seg2
seg2 = SrtSegment(seg2_dict)
seg2.translation = trans_seg2
result_list = []
if len(seg1.translation) > text_threshold and (seg1.end - seg1.start) > time_threshold:
result_list += self.split_seg(seg1, text_threshold, time_threshold)
else:
result_list.append(seg1)
if len(seg2.translation) > text_threshold and (seg2.end - seg2.start) > time_threshold:
result_list += self.split_seg(seg2, text_threshold, time_threshold)
else:
result_list.append(seg2)
return result_list
def check_len_and_split(self, text_threshold=30, time_threshold=1.0):
# if sentence length >= threshold and sentence duration > time_threshold, split this segments to two
logging.info("performing check_len_and_split")
segments = []
for i, seg in enumerate(self.segments):
if len(seg.translation) > text_threshold and (seg.end - seg.start) > time_threshold:
seg_list = self.split_seg(seg, text_threshold, time_threshold)
logging.info("splitting segment {} in to {} parts".format(i + 1, len(seg_list)))
segments += seg_list
else:
segments.append(seg)
self.segments = segments
logging.info("check_len_and_split finished")
pass
def check_len_and_split_range(self, range, text_threshold=30, time_threshold=1.0):
# DEPRECATED
# if sentence length >= text_threshold, split this segments to two
start_seg_id = range[0]
end_seg_id = range[1]
extra_len = 0
segments = []
for i, seg in enumerate(self.segments[start_seg_id - 1:end_seg_id]):
if len(seg.translation) > text_threshold and (seg.end - seg.start) > time_threshold:
seg_list = self.split_seg(seg, text_threshold, time_threshold)
segments += seg_list
extra_len += len(seg_list) - 1
else:
segments.append(seg)
self.segments[start_seg_id - 1:end_seg_id] = segments
return extra_len
def correct_with_force_term(self):
## force term correction
logging.info("performing force term correction")
# load term dictionary
with open("finetune_data/dict_enzh.csv", 'r', encoding='utf-8') as f:
term_enzh_dict = {rows[0]: rows[1] for rows in reader(f)}
keywords = list(term_enzh_dict.keys())
keywords.sort(key=lambda x: len(x), reverse=True)
for word in keywords:
for i, seg in enumerate(self.segments):
if word in seg.source_text.lower():
seg.source_text = re.sub(fr"({word}es|{word}s?)\b", "{}".format(term_enzh_dict.get(word)),
seg.source_text, flags=re.IGNORECASE)
logging.info(
"replace term: " + word + " --> " + term_enzh_dict.get(word) + " in time stamp {}".format(
i + 1))
logging.info("source text becomes: " + seg.source_text)
comp_dict = []
def fetchfunc(self, word, threshold):
import enchant
result = word
distance = 0
threshold = threshold * len(word)
if len(self.comp_dict) == 0:
with open("./finetune_data/dict_freq.txt", 'r', encoding='utf-8') as f:
self.comp_dict = {rows[0]: 1 for rows in reader(f)}
temp = ""
for matched in self.comp_dict:
if (" " in matched and " " in word) or (" " not in matched and " " not in word):
if enchant.utils.levenshtein(word, matched) < enchant.utils.levenshtein(word, temp):
temp = matched
if enchant.utils.levenshtein(word, temp) < threshold:
distance = enchant.utils.levenshtein(word, temp)
result = temp
return distance, result
def extract_words(self, sentence, n):
# this function split the sentence to chunks by n of words
# e.g. sentence: "this, is a sentence", n = 2
# result: ["this,", "is", "a", ["sentence"], ["this,", "is"], "is a", "a sentence"]
words = sentence.split()
res = []
for j in range(n, 0, -1):
res += [words[i:i + j] for i in range(len(words) - j + 1)]
return res
def spell_check_term(self):
logging.info("performing spell check")
import enchant
dict = enchant.Dict('en_US')
term_spellDict = enchant.PyPWL('./finetune_data/dict_freq.txt')
for seg in tqdm(self.segments):
ready_words = self.extract_words(seg.source_text, 2)
for i in range(len(ready_words)):
word_list = ready_words[i]
word, real_word, pos = self.get_real_word(word_list)
if not dict.check(real_word) and not term_spellDict.check(real_word):
distance, correct_term = self.fetchfunc(real_word, 0.3)
if distance != 0:
seg.source_text = re.sub(word[:pos], correct_term, seg.source_text, flags=re.IGNORECASE)
logging.info(
"replace: " + word[:pos] + " to " + correct_term + "\t distance = " + str(distance))
def get_real_word(self, word_list: list):
word = ""
for w in word_list:
word += f"{w} "
word = word[:-1] # "this, is"
if word[-2:] == ".\n":
real_word = word[:-2].lower()
n = -2
elif word[-1:] in [".", "\n", ",", "!", "?"]:
real_word = word[:-1].lower()
n = -1
else:
real_word = word.lower()
n = 0
return word, real_word, len(word) + n
## WRITE AND READ FUNCTIONS ##
def get_source_only(self):
# return a string with pure source text
result = ""
for i, seg in enumerate(self.segments):
result += f'{seg.source_text}\n\n\n' # f'SENTENCE {i+1}: {seg.source_text}\n\n\n'
return result
def reform_src_str(self):
result = ""
for i, seg in enumerate(self.segments):
result += f'{i + 1}\n'
result += str(seg)
return result
def reform_trans_str(self):
result = ""
for i, seg in enumerate(self.segments):
result += f'{i + 1}\n'
result += seg.get_trans_str()
return result
def form_bilingual_str(self):
result = ""
for i, seg in enumerate(self.segments):
result += f'{i + 1}\n'
result += seg.get_bilingual_str()
return result
def write_srt_file_src(self, path: str):
# write srt file to path
with open(path, "w", encoding='utf-8') as f:
f.write(self.reform_src_str())
pass
def write_srt_file_translate(self, path: str):
logging.info("writing to " + path)
with open(path, "w", encoding='utf-8') as f:
f.write(self.reform_trans_str())
pass
def write_srt_file_bilingual(self, path: str):
logging.info("writing to " + path)
with open(path, "w", encoding='utf-8') as f:
f.write(self.form_bilingual_str())
pass
def realtime_write_srt(self, path, range, length, idx):
# DEPRECATED
start_seg_id = range[0]
end_seg_id = range[1]
with open(path, "a", encoding='utf-8') as f:
# for i, seg in enumerate(self.segments[start_seg_id-1:end_seg_id+length]):
# f.write(f'{i+idx}\n')
# f.write(seg.get_trans_str())
for i, seg in enumerate(self.segments):
if i < range[0] - 1: continue
if i >= range[1] + length: break
f.write(f'{i + idx}\n')
f.write(seg.get_trans_str())
pass
def realtime_bilingual_write_srt(self, path, range, length, idx):
# DEPRECATED
start_seg_id = range[0]
end_seg_id = range[1]
with open(path, "a", encoding='utf-8') as f:
for i, seg in enumerate(self.segments):
if i < range[0] - 1: continue
if i >= range[1] + length: break
f.write(f'{i + idx}\n')
f.write(seg.get_bilingual_str())
pass