StarAtNyte1 commited on
Commit
41045e8
1 Parent(s): 46c5de7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -192
app.py CHANGED
@@ -1,194 +1,60 @@
1
  import gradio as gr
2
- import os
3
-
4
- import argparse
5
- import time
6
- from pathlib import Path
7
-
8
- import cv2
9
  import torch
10
- import torch.backends.cudnn as cudnn
11
- from numpy import random
12
-
13
- from models.experimental import attempt_load
14
- from utils.datasets import LoadStreams, LoadImages
15
- from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
16
- scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
17
- from utils.plots import plot_one_box
18
- from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
19
- from PIL import Image
20
-
21
- from huggingface_hub import hf_hub_download
22
-
23
-
24
- def load_model():
25
- model_path = hf_hub_download(repo_id=f"StarAtNyte1/yolov7_custom", filename=f"best.pt")
26
-
27
- return model_path
28
-
29
-
30
-
31
-
32
- models = {'best': load_model()}
33
-
34
-
35
- def detect(img,model):
36
- parser = argparse.ArgumentParser()
37
- parser.add_argument('--weights', nargs='+', type=str, default=models[model], help='model.pt path(s)')
38
- parser.add_argument('--source', type=str, default='Inference/', help='source') # file/folder, 0 for webcam
39
- parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
40
- parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
41
- parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
42
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
43
- parser.add_argument('--view-img', action='store_true', help='display results')
44
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
45
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
46
- parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
47
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
48
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
49
- parser.add_argument('--augment', action='store_true', help='augmented inference')
50
- parser.add_argument('--update', action='store_true', help='update all models')
51
- parser.add_argument('--project', default='runs/detect', help='save results to project/name')
52
- parser.add_argument('--name', default='exp', help='save results to project/name')
53
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
54
- parser.add_argument('--trace', action='store_true', help='trace model')
55
- opt = parser.parse_args()
56
- img.save("Inference/test.jpg")
57
- source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
58
- save_img = True # save inference images
59
- webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
60
- ('rtsp://', 'rtmp://', 'http://', 'https://'))
61
-
62
- # Directories
63
- save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
64
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
65
-
66
- # Initialize
67
- set_logging()
68
- device = select_device(opt.device)
69
- half = device.type != 'cpu' # half precision only supported on CUDA
70
-
71
- # Load model
72
- model = attempt_load(weights, map_location=device) # load FP32 model
73
- stride = int(model.stride.max()) # model stride
74
- imgsz = check_img_size(imgsz, s=stride) # check img_size
75
-
76
- if trace:
77
- model = TracedModel(model, device, opt.img_size)
78
-
79
- if half:
80
- model.half() # to FP16
81
-
82
- # Second-stage classifier
83
- classify = False
84
- if classify:
85
- modelc = load_classifier(name='resnet101', n=2) # initialize
86
- modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
87
-
88
- # Set Dataloader
89
- vid_path, vid_writer = None, None
90
- if webcam:
91
- view_img = check_imshow()
92
- cudnn.benchmark = True # set True to speed up constant image size inference
93
- dataset = LoadStreams(source, img_size=imgsz, stride=stride)
94
- else:
95
- dataset = LoadImages(source, img_size=imgsz, stride=stride)
96
-
97
- # Get names and colors
98
- names = model.module.names if hasattr(model, 'module') else model.names
99
- colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
100
-
101
- # Run inference
102
- if device.type != 'cpu':
103
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
104
- t0 = time.time()
105
- for path, img, im0s, vid_cap in dataset:
106
- img = torch.from_numpy(img).to(device)
107
- img = img.half() if half else img.float() # uint8 to fp16/32
108
- img /= 255.0 # 0 - 255 to 0.0 - 1.0
109
- if img.ndimension() == 3:
110
- img = img.unsqueeze(0)
111
-
112
- # Inference
113
- t1 = time_synchronized()
114
- pred = model(img, augment=opt.augment)[0]
115
-
116
- # Apply NMS
117
- pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
118
- t2 = time_synchronized()
119
-
120
- # Apply Classifier
121
- if classify:
122
- pred = apply_classifier(pred, modelc, img, im0s)
123
-
124
- # Process detections
125
- for i, det in enumerate(pred): # detections per image
126
- if webcam: # batch_size >= 1
127
- p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
128
- else:
129
- p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
130
-
131
- p = Path(p) # to Path
132
- save_path = str(save_dir / p.name) # img.jpg
133
- txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
134
- s += '%gx%g ' % img.shape[2:] # print string
135
- gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
136
- if len(det):
137
- # Rescale boxes from img_size to im0 size
138
- det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
139
-
140
- # Print results
141
- for c in det[:, -1].unique():
142
- n = (det[:, -1] == c).sum() # detections per class
143
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
144
-
145
- # Write results
146
- for *xyxy, conf, cls in reversed(det):
147
- if save_txt: # Write to file
148
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
149
- line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
150
- with open(txt_path + '.txt', 'a') as f:
151
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
152
-
153
- if save_img or view_img: # Add bbox to image
154
- label = f'{names[int(cls)]} {conf:.2f}'
155
- plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
156
-
157
- # Print time (inference + NMS)
158
- #print(f'{s}Done. ({t2 - t1:.3f}s)')
159
-
160
- # Stream results
161
- if view_img:
162
- cv2.imshow(str(p), im0)
163
- cv2.waitKey(1) # 1 millisecond
164
-
165
- # Save results (image with detections)
166
- if save_img:
167
- if dataset.mode == 'image':
168
- cv2.imwrite(save_path, im0)
169
- else: # 'video' or 'stream'
170
- if vid_path != save_path: # new video
171
- vid_path = save_path
172
- if isinstance(vid_writer, cv2.VideoWriter):
173
- vid_writer.release() # release previous video writer
174
- if vid_cap: # video
175
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
176
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
177
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
178
- else: # stream
179
- fps, w, h = 30, im0.shape[1], im0.shape[0]
180
- save_path += '.mp4'
181
- vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
182
- vid_writer.write(im0)
183
-
184
- if save_txt or save_img:
185
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
186
- #print(f"Results saved to {save_dir}{s}")
187
-
188
- print(f'Done. ({time.time() - t0:.3f}s)')
189
-
190
- return Image.fromarray(im0[:,:,::-1])
191
-
192
-
193
- gr.Interface(detect,[gr.Image(type="pil"),gr.Dropdown(choices='yolov7')], gr.Image(type="pil"),title="Yolov7").launch()
194
-
 
1
  import gradio as gr
 
 
 
 
 
 
 
2
  import torch
3
+ import yolov7
4
+
5
+
6
+
7
+ def yolov7_inference(
8
+ image: gr.inputs.Image = None,
9
+ model_path: gr.inputs.Dropdown = None,
10
+ image_size: gr.inputs.Slider = 640,
11
+ conf_threshold: gr.inputs.Slider = 0.25,
12
+ iou_threshold: gr.inputs.Slider = 0.45,
13
+ ):
14
+ """
15
+ YOLOv7 inference function
16
+ Args:
17
+ image: Input image
18
+ model_path: Path to the model
19
+ image_size: Image size
20
+ conf_threshold: Confidence threshold
21
+ iou_threshold: IOU threshold
22
+ Returns:
23
+ Rendered image
24
+ """
25
+
26
+ model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
27
+ model.conf = conf_threshold
28
+ model.iou = iou_threshold
29
+ results = model([image], size=image_size)
30
+ return results.render()[0]
31
+
32
+
33
+ inputs = [
34
+ gr.inputs.Image(type="pil", label="Input Image"),
35
+ gr.inputs.Dropdown(
36
+ choices=[
37
+ "StarAtNyte1/yolov7_custom",
38
+ ],
39
+ default="StarAtNyte1/yolov7_custom",
40
+ label="Model",
41
+ ),
42
+ gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"),
43
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
44
+ gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
45
+ ]
46
+
47
+ outputs = gr.outputs.Image(type="filepath", label="Output Image")
48
+ #title = "Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors"
49
+
50
+ examples = [['small-vehicles1.jpeg', 'kadirnar/yolov7-tiny-v0.1', 640, 0.25, 0.45], ['zidane.jpg', 'kadirnar/yolov7-v0.1', 640, 0.25, 0.45]]
51
+ demo_app = gr.Interface(
52
+ fn=yolov7_inference,
53
+ inputs=inputs,
54
+ outputs=outputs,
55
+ title=title,
56
+ examples=examples,
57
+ cache_examples=True,
58
+ theme='huggingface',
59
+ )
60
+ demo_app.launch(debug=True, enable_queue=True)