Spaces:
Runtime error
Runtime error
import os | |
import pathlib | |
import re | |
import gradio as gr | |
from langchain.docstore.document import Document | |
from langchain.document_loaders import TextLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores import FAISS | |
os.environ["OPENAI_API_KEY"] = "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" | |
from langchain.prompts.chat import ( | |
ChatPromptTemplate, | |
SystemMessagePromptTemplate, | |
HumanMessagePromptTemplate, | |
) | |
from langchain.chat_models import ChatOpenAI | |
from langchain.chains import RetrievalQAWithSourcesChain | |
# Set the data store directory | |
DATA_STORE_DIR = "data_store" | |
if os.path.exists(DATA_STORE_DIR): | |
vector_store = FAISS.load_local( | |
DATA_STORE_DIR, | |
OpenAIEmbeddings() | |
) | |
else: | |
print(f"Missing files. Upload index.faiss and index.pkl files to {DATA_STORE_DIR} directory first") | |
system_template = """Use the following pieces of context to answer the user's question. | |
Take note of the sources and include them in the answer in the format: "SOURCES: source1", use "SOURCES" in capital letters regardless of the number of sources. | |
If you don't know the answer, just say "I don't know", don't try to make up an answer. | |
---------------- | |
{summaries}""" | |
messages = [ | |
SystemMessagePromptTemplate.from_template(system_template), | |
HumanMessagePromptTemplate.from_template("{question}") | |
] | |
prompt = ChatPromptTemplate.from_messages(messages) | |
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, | |
max_tokens=256) # Modify model_name if you have access to GPT-4 | |
chain_type_kwargs = {"prompt": prompt} | |
chain = RetrievalQAWithSourcesChain.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=vector_store.as_retriever(), | |
return_source_documents=True, | |
chain_type_kwargs=chain_type_kwargs | |
) | |
def chatbot_interface(query): | |
result = chain(query) | |
return result['answer'] | |
# Create a Gradio interface | |
gr.Interface( | |
fn=chatbot_interface, | |
inputs="text", | |
outputs="text", | |
title="LLM Chatbot", | |
description="Chat with the LLM Chatbot on Custom Data" | |
).launch() | |