Rakshitjan's picture
Update app.py
39fdb35 verified
# from fastapi import FastAPI, HTTPException, Request
# from fastapi.middleware.cors import CORSMiddleware
# from fastapi.responses import JSONResponse
# from pydantic import BaseModel
# import openai
# import os
# import json
# import re
# from typing import Dict, List, Optional, Tuple, Any
# app = FastAPI(title="TestCreationAgent",
# description="An API for collecting test creation parameters through conversation")
# # Add CORS middleware to allow requests from frontend
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"], # Allows all origins
# allow_credentials=True,
# allow_methods=["*"], # Allows all methods
# allow_headers=["*"], # Allows all headers
# )
# # Define subject chapters mapping
# SUBJECT_CHAPTERS = {
# "Mathematics": [
# "Number Systems", "Polynomials", "Coordinate Geometry", "Linear Equations in Two Variables",
# "Introduction to Euclid's Geometry", "Lines and Angles", "Triangles", "Quadrilaterals",
# "Areas of Parallelograms and Triangles", "Circles", "Constructions", "Heron's Formula",
# "Surface Areas and Volumes", "Statistics", "Probability", "Real Numbers",
# "Pair of Linear Equations in Two Variables", "Quadratic Equations", "Arithmetic Progressions",
# "Introduction to Trigonometry", "Some Applications of Trigonometry", "Areas Related to Circles",
# "Sets", "Relations and Functions", "Trigonometric Functions", "Principle of Mathematical Induction",
# "Complex Numbers and Quadratic Equations", "Linear Inequalities", "Permutations and Combinations",
# "Binomial Theorem", "Sequences and Series", "Straight Lines", "Conic Sections",
# "Introduction to Three Dimensional Geometry", "Limits and Derivatives",
# "Inverse Trigonometric Functions", "Matrices", "Determinants",
# "Continuity and Differentiability", "Application of Derivatives", "Integrals",
# "Application of Integrals", "Differential Equations", "Vector Algebra",
# "Three Dimensional Geometry", "Linear Programming"
# ],
# "Physics": [
# "Motion", "Force and Laws of Motion", "Gravitation", "Work and Energy", "Sound",
# "Light: Reflection and Refraction", "Human Eye and Colourful World", "Electricity",
# "Magnetic Effects of Electric Current", "Physical World and Measurement", "Kinematics",
# "Laws of Motion", "Work, Energy and Power", "Motion of System of Particles and Rigid Body",
# "Properties of Bulk Matter", "Thermodynamics", "Behaviour of Perfect Gases and Kinetic Theory",
# "Oscillations and Waves", "Electrostatics", "Current Electricity",
# "Magnetic Effects of Current and Magnetism", "Electromagnetic Induction and Alternating Currents",
# "Electromagnetic Waves", "Optics", "Dual Nature of Radiation and Matter", "Atoms", "Nuclei",
# "Semiconductor Electronics: Materials, Devices and Simple Circuits", "Vectors"
# ],
# "Chemistry": [
# "Matter in Our Surroundings", "Is Matter Around Us Pure?", "Atoms and Molecules",
# "Structure of the Atom", "Chemical Reactions and Equations", "Acids, Bases and Salts",
# "Metals and Non-metals", "Carbon and Its Compounds", "Periodic Classification of Elements",
# "Some Basic Concepts of Chemistry", "Structure of Atom",
# "Classification of Elements and Periodicity in Properties",
# "Chemical Bonding and Molecular Structure", "States of Matter: Gases and Liquids",
# "Thermodynamics", "Equilibrium", "Redox Reactions",
# "Organic Chemistry: Some Basic Principles and Techniques", "Hydrocarbons",
# "Environmental Chemistry", "Solid State", "Solutions", "Electrochemistry",
# "Chemical Kinetics", "Surface Chemistry", "General Principles and Processes of Isolation of Elements",
# "p-Block Elements", "d- and f-Block Elements", "Coordination Compounds",
# "Haloalkanes and Haloarenes", "Alcohols, Phenols and Ethers",
# "Aldehydes, Ketones and Carboxylic Acids", "Amines", "Biomolecules", "Polymers",
# "Chemistry in Everyday Life"
# ],
# "Organic Chemistry": [
# "Organic Chemistry: Some Basic Principles and Techniques", "Hydrocarbons",
# "Haloalkanes and Haloarenes", "Alcohols, Phenols and Ethers",
# "Aldehydes, Ketones and Carboxylic Acids", "Amines", "Biomolecules",
# "Polymers", "Chemistry in Everyday Life"
# ],
# "Inorganic Chemistry": [
# "Classification of Elements and Periodicity in Properties",
# "Chemical Bonding and Molecular Structure", "Redox Reactions",
# "p-Block Elements", "d- and f-Block Elements", "Coordination Compounds"
# ]
# }
# # Create a flat mapping of misspelled/approximate chapter names to correct ones
# CHAPTER_MAPPING = {}
# for subject, chapters in SUBJECT_CHAPTERS.items():
# for chapter in chapters:
# # Add the correct chapter name
# CHAPTER_MAPPING[chapter.lower()] = (subject, chapter)
# # Add common misspellings/variations
# if chapter.lower() == "thermodynamics":
# CHAPTER_MAPPING["termodyanamics"] = (subject, chapter)
# CHAPTER_MAPPING["termodyn"] = (subject, chapter)
# CHAPTER_MAPPING["thermo"] = (subject, chapter)
# CHAPTER_MAPPING["thermodynamic"] = (subject, chapter)
# class UserInput(BaseModel):
# message: str
# session_id: str
# class SessionState(BaseModel):
# params: Dict[str, str] = {
# "chapters_of_the_test": "",
# "questions_per_chapter": "",
# "difficulty_distribution": "",
# "test_duration": "",
# "test_date": "",
# "test_time": ""
# }
# completed: bool = False
# attempt_count: int = 0
# # In-memory session storage
# sessions = {}
# def normalize_chapter_name(chapter_input: str) -> Optional[Tuple[str, str]]:
# """
# Maps user input to standardized chapter names from the curriculum.
# Returns tuple of (subject, correct_chapter_name) or None if no match.
# """
# if not chapter_input:
# return None
# # Direct mapping for exact matches or known misspellings
# norm_input = chapter_input.lower().strip()
# if norm_input in CHAPTER_MAPPING:
# return CHAPTER_MAPPING[norm_input]
# # Try fuzzy matching if no direct match
# # Look for partial matches
# for chapter_key, (subject, correct_name) in CHAPTER_MAPPING.items():
# if norm_input in chapter_key or chapter_key in norm_input:
# return (subject, correct_name)
# # No match found
# return None
# async def llm_extractParams(user_input: str, current_params: Dict[str, str]) -> Dict[str, str]:
# """
# Extracts structured test parameters from natural language input
# and updates the provided params dictionary.
# """
# system_prompt = """
# You are an expert educational test creation assistant that extracts test setup parameters from user input.
# Extract ONLY the parameters explicitly mentioned in the user's message.
# Return a JSON object with all the following keys:
# - chapters_of_the_test (string: list of chapters or topics)
# - questions_per_chapter (string or number: how many questions per chapter)
# - difficulty_distribution (string: e.g., "easy:40%, medium:40%, hard:20%" or any format specified)
# - test_duration (string or number: time in minutes)
# - test_date (string: in any reasonable date format)
# - test_time (string: time of day)
# Important rules:
# - Do NOT make assumptions - if information isn't provided, leave as empty string ("")
# - Only fill in values explicitly mentioned by the user
# - For difficulty_distribution:
# * Convert numeric sequences like "30 40 30" to "easy:30%, medium:40%, hard:30%" if they appear to be distributions
# * Convert descriptions like "mostly hard" to approximate percentages (e.g., "easy:20%, medium:20%, hard:60%")
# * Accept formats like "60 easy, 20 medium, 20 hard" and convert to percentages
# - Return valid JSON with all keys, even if empty
# """
# messages = [
# {"role": "system", "content": system_prompt},
# {"role": "user", "content": user_input}
# ]
# try:
# response = openai.chat.completions.create(
# model="gpt-4o-mini",
# messages=messages,
# temperature=0.2
# )
# extracted_json = response.choices[0].message.content.strip()
# # Handle potential JSON formatting issues by extracting JSON from response
# if not extracted_json.startswith('{'):
# # Find JSON object in text if it's not a clean JSON response
# start_idx = extracted_json.find('{')
# end_idx = extracted_json.rfind('}') + 1
# if start_idx >= 0 and end_idx > start_idx:
# extracted_json = extracted_json[start_idx:end_idx]
# else:
# raise ValueError("Unable to extract valid JSON from response")
# # Parse and update the current_params safely
# extracted_dict = json.loads(extracted_json)
# updated_params = current_params.copy()
# for key in updated_params:
# if key.lower() in extracted_dict and extracted_dict[key.lower()]:
# updated_params[key] = extracted_dict[key.lower()]
# elif key in extracted_dict and extracted_dict[key]:
# updated_params[key] = extracted_dict[key]
# # Apply chapter mapping if chapters were specified
# if updated_params["chapters_of_the_test"] and updated_params["chapters_of_the_test"] != current_params["chapters_of_the_test"]:
# chapters_input = updated_params["chapters_of_the_test"]
# # Split multiple chapters if comma-separated
# chapter_list = [ch.strip() for ch in re.split(r',|;', chapters_input)]
# mapped_chapters = []
# for chapter in chapter_list:
# result = normalize_chapter_name(chapter)
# if result:
# subject, correct_name = result
# mapped_chapters.append(f"{correct_name} ({subject})")
# else:
# mapped_chapters.append(chapter) # Keep as-is if no mapping found
# updated_params["chapters_of_the_test"] = ", ".join(mapped_chapters)
# return updated_params
# except json.JSONDecodeError as e:
# print(f"Error: Could not parse response as JSON: {e}")
# return current_params
# except Exception as e:
# print(f"Error during parameter extraction: {e}")
# return current_params
# def gate(params: Dict[str, str]) -> List[str]:
# """
# Checks which fields are still empty in the params.
# Returns a list of missing parameter keys.
# """
# return [key for key, val in params.items() if not val]
# async def llm_getMissingParams(missing_keys: List[str]) -> str:
# """
# Generates a human-readable prompt to ask user for missing fields.
# """
# # Create context-aware prompts for specific missing fields
# context_details = {
# "chapters_of_the_test": "such as Math, Science, History, etc.",
# "questions_per_chapter": "the number of questions for each chapter",
# "difficulty_distribution": "as percentages or numbers (easy, medium, hard)",
# "test_duration": "in minutes",
# "test_date": "when the test will be given",
# "test_time": "the time of day for the test"
# }
# # Create a more specific prompt based on what's missing
# if len(missing_keys) == 1:
# key = missing_keys[0]
# prompt = f"Please provide the {key.replace('_', ' ')} {context_details.get(key, '')}."
# else:
# formatted_missing = [f"{key.replace('_', ' ')} ({context_details.get(key, '')})" for key in missing_keys]
# prompt = f"The following test details are still needed: {', '.join(formatted_missing)}."
# messages = [
# {"role": "system", "content": "You are a helpful assistant who creates clear, concise questions to collect missing test setup information. Keep your response under 2 sentences and focus only on what's missing."},
# {"role": "user", "content": prompt}
# ]
# try:
# response = openai.chat.completions.create(
# model="gpt-4o-mini",
# messages=messages,
# temperature=0.3
# )
# return response.choices[0].message.content.strip()
# except Exception as e:
# print(f"Error generating prompt for missing values: {e}")
# return f"Please provide the following missing information: {', '.join(missing_keys)}."
# @app.on_event("startup")
# async def startup_event():
# # Set up OpenAI API key from environment variable
# openai.api_key = os.getenv("OPENAI_API_KEY")
# if not openai.api_key:
# print("⚠️ WARNING: OPENAI_API_KEY environment variable not set.")
# @app.get("/")
# async def root():
# return {"message": "Test Creation Agent API is running"}
# @app.post("/chat")
# async def chat(user_input: UserInput):
# session_id = user_input.session_id
# # Initialize session if it doesn't exist
# if session_id not in sessions:
# sessions[session_id] = SessionState()
# session = sessions[session_id]
# # If this is the first message, send a welcome message
# if session.attempt_count == 0:
# session.attempt_count += 1
# return {
# "response": "πŸ‘‹ Welcome! Please provide the test setup details. I need: chapters, questions per chapter, difficulty distribution, test duration, date, and time.",
# "session_state": {
# "params": session.params,
# "completed": False
# }
# }
# # Process user input to extract parameters
# session.params = await llm_extractParams(user_input.message, session.params)
# session.attempt_count += 1
# # Check if we have all required parameters
# missing = gate(session.params)
# # If we have all parameters or exceeded max attempts, return completion
# max_attempts = 10
# if not missing or session.attempt_count > max_attempts:
# session.completed = True
# if not missing:
# result = "βœ… All test parameters are now complete:"
# else:
# result = "⚠️ Some parameters could not be filled after multiple attempts:"
# # Format the parameters as a readable string
# for k, v in session.params.items():
# result += f"\n- {k.replace('_', ' ').title()}: {v or 'Not provided'}"
# return {
# "response": result,
# "session_state": {
# "params": session.params,
# "completed": True
# }
# }
# # Otherwise, ask for missing parameters
# follow_up_prompt = await llm_getMissingParams(missing)
# return {
# "response": follow_up_prompt,
# "session_state": {
# "params": session.params,
# "completed": False
# }
# }
# @app.get("/session/{session_id}")
# async def get_session(session_id: str):
# if session_id not in sessions:
# raise HTTPException(status_code=404, detail="Session not found")
# session = sessions[session_id]
# return {
# "params": session.params,
# "completed": session.completed,
# "attempt_count": session.attempt_count
# }
# @app.delete("/session/{session_id}")
# async def delete_session(session_id: str):
# if session_id in sessions:
# del sessions[session_id]
# return {"message": "Session deleted successfully"}
# @app.post("/reset")
# async def reset_session(user_input: UserInput):
# session_id = user_input.session_id
# sessions[session_id] = SessionState()
# return {
# "response": "Session reset. πŸ‘‹ Welcome! Please provide the test setup details. I need: chapters, questions per chapter, difficulty distribution, test duration, date, and time.",
# "session_state": {
# "params": sessions[session_id].params,
# "completed": False
# }
# }
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run("app:app", host="0.0.0.0", port=int(os.getenv("PORT", 8000)), reload=True)
from fastapi import FastAPI, HTTPException, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import openai
import os
import json
import re
from typing import Dict, List, Optional, Tuple, Any
import uuid
from datetime import datetime, timedelta
app = FastAPI(
title="TestCreationAgent",
description="An API for collecting test creation parameters through conversation",
version="1.0.0"
)
# Add CORS middleware to allow requests from frontend
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define subject chapters mapping
SUBJECT_CHAPTERS = {
"Mathematics": [
"Number Systems", "Polynomials", "Coordinate Geometry", "Linear Equations in Two Variables",
"Introduction to Euclid's Geometry", "Lines and Angles", "Triangles", "Quadrilaterals",
"Areas of Parallelograms and Triangles", "Circles", "Constructions", "Heron's Formula",
"Surface Areas and Volumes", "Statistics", "Probability", "Real Numbers",
"Pair of Linear Equations in Two Variables", "Quadratic Equations", "Arithmetic Progressions",
"Introduction to Trigonometry", "Some Applications of Trigonometry", "Areas Related to Circles",
"Sets", "Relations and Functions", "Trigonometric Functions", "Principle of Mathematical Induction",
"Complex Numbers and Quadratic Equations", "Linear Inequalities", "Permutations and Combinations",
"Binomial Theorem", "Sequences and Series", "Straight Lines", "Conic Sections",
"Introduction to Three Dimensional Geometry", "Limits and Derivatives",
"Inverse Trigonometric Functions", "Matrices", "Determinants",
"Continuity and Differentiability", "Application of Derivatives", "Integrals",
"Application of Integrals", "Differential Equations", "Vector Algebra",
"Three Dimensional Geometry", "Linear Programming"
],
"Physics": [
"Motion", "Force and Laws of Motion", "Gravitation", "Work and Energy", "Sound",
"Light: Reflection and Refraction", "Human Eye and Colourful World", "Electricity",
"Magnetic Effects of Electric Current", "Physical World and Measurement", "Kinematics",
"Laws of Motion", "Work, Energy and Power", "Motion of System of Particles and Rigid Body",
"Properties of Bulk Matter", "Thermodynamics", "Behaviour of Perfect Gases and Kinetic Theory",
"Oscillations and Waves", "Electrostatics", "Current Electricity",
"Magnetic Effects of Current and Magnetism", "Electromagnetic Induction and Alternating Currents",
"Electromagnetic Waves", "Optics", "Dual Nature of Radiation and Matter", "Atoms", "Nuclei",
"Semiconductor Electronics: Materials, Devices and Simple Circuits", "Vectors"
],
"Chemistry": [
"Matter in Our Surroundings", "Is Matter Around Us Pure?", "Atoms and Molecules",
"Structure of the Atom", "Chemical Reactions and Equations", "Acids, Bases and Salts",
"Metals and Non-metals", "Carbon and Its Compounds", "Periodic Classification of Elements",
"Some Basic Concepts of Chemistry", "Structure of Atom",
"Classification of Elements and Periodicity in Properties",
"Chemical Bonding and Molecular Structure", "States of Matter: Gases and Liquids",
"Thermodynamics", "Equilibrium", "Redox Reactions",
"Organic Chemistry: Some Basic Principles and Techniques", "Hydrocarbons",
"Environmental Chemistry", "Solid State", "Solutions", "Electrochemistry",
"Chemical Kinetics", "Surface Chemistry", "General Principles and Processes of Isolation of Elements",
"p-Block Elements", "d- and f-Block Elements", "Coordination Compounds",
"Haloalkanes and Haloarenes", "Alcohols, Phenols and Ethers",
"Aldehydes, Ketones and Carboxylic Acids", "Amines", "Biomolecules", "Polymers",
"Chemistry in Everyday Life"
],
"Organic Chemistry": [
"Organic Chemistry: Some Basic Principles and Techniques", "Hydrocarbons",
"Haloalkanes and Haloarenes", "Alcohols, Phenols and Ethers",
"Aldehydes, Ketones and Carboxylic Acids", "Amines", "Biomolecules",
"Polymers", "Chemistry in Everyday Life"
],
"Inorganic Chemistry": [
"Classification of Elements and Periodicity in Properties",
"Chemical Bonding and Molecular Structure", "Redox Reactions",
"p-Block Elements", "d- and f-Block Elements", "Coordination Compounds"
]
}
# Create a flat mapping of misspelled/approximate chapter names to correct ones
CHAPTER_MAPPING = {}
for subject, chapters in SUBJECT_CHAPTERS.items():
for chapter in chapters:
CHAPTER_MAPPING[chapter.lower()] = (subject, chapter)
# Add common misspellings/variations
if chapter.lower() == "thermodynamics":
CHAPTER_MAPPING["termodyanamics"] = (subject, chapter)
CHAPTER_MAPPING["termodyn"] = (subject, chapter)
CHAPTER_MAPPING["thermo"] = (subject, chapter)
CHAPTER_MAPPING["thermodynamic"] = (subject, chapter)
class UserInput(BaseModel):
message: str
session_id: Optional[str] = None
class SessionState(BaseModel):
params: Dict[str, str] = {
"chapters_of_the_test": "",
"questions_per_chapter": "",
"difficulty_distribution": "",
"test_duration": "",
"test_date": "",
"test_time": ""
}
completed: bool = False
attempt_count: int = 0
created_at: datetime = datetime.utcnow()
last_accessed: datetime = datetime.utcnow()
# In-memory session storage with automatic cleanup
sessions: Dict[str, SessionState] = {}
def normalize_chapter_name(chapter_input: str) -> Optional[Tuple[str, str]]:
"""Maps user input to standardized chapter names from the curriculum."""
if not chapter_input:
return None
norm_input = chapter_input.lower().strip()
if norm_input in CHAPTER_MAPPING:
return CHAPTER_MAPPING[norm_input]
# Try fuzzy matching if no direct match
for chapter_key, (subject, correct_name) in CHAPTER_MAPPING.items():
if norm_input in chapter_key or chapter_key in norm_input:
return (subject, correct_name)
return None
async def cleanup_sessions():
"""Remove sessions older than 24 hours"""
now = datetime.utcnow()
expired = [sid for sid, session in sessions.items()
if now - session.last_accessed > timedelta(hours=24)]
for sid in expired:
del sessions[sid]
async def llm_extract_params(user_input: str, current_params: Dict[str, str]) -> Dict[str, str]:
"""Extracts structured test parameters from natural language input."""
system_prompt = """
You are an expert educational test creation assistant that extracts test setup parameters from user input.
Extract ONLY the parameters explicitly mentioned in the user's message.
Return a JSON object with all the following keys:
- chapters_of_the_test (string: list of chapters or topics)
- questions_per_chapter (string or number: how many questions per chapter)
- difficulty_distribution (string: e.g., "easy:40%, medium:40%, hard:20%" or any format specified)
- test_duration (string or number: time in minutes)
- test_date (string: in any reasonable date format)
- test_time (string: time of day)
Important rules:
- Do NOT make assumptions - if information isn't provided, leave as empty string ("")
- Only fill in values explicitly mentioned by the user
- For difficulty_distribution:
* Convert numeric sequences like "30 40 30" to "easy:30%, medium:40%, hard:30%" if they appear to be distributions
* Convert descriptions like "mostly hard" to approximate percentages (e.g., "easy:20%, medium:20%, hard:60%")
* Accept formats like "60 easy, 20 medium, 20 hard" and convert to percentages
- Return valid JSON with all keys, even if empty
"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_input}
]
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini",
messages=messages,
temperature=0.2
)
extracted_json = response.choices[0].message.content.strip()
# Safely parse the JSON response
try:
extracted_dict = json.loads(extracted_json)
except json.JSONDecodeError:
# Try to extract JSON from malformed response
start = extracted_json.find('{')
end = extracted_json.rfind('}') + 1
if start >= 0 and end > start:
extracted_dict = json.loads(extracted_json[start:end])
else:
raise ValueError("Invalid JSON response from LLM")
updated_params = current_params.copy()
for key in updated_params:
if key in extracted_dict and extracted_dict[key]:
updated_params[key] = str(extracted_dict[key])
# Apply chapter mapping if chapters were specified
if updated_params["chapters_of_the_test"] and updated_params["chapters_of_the_test"] != current_params["chapters_of_the_test"]:
chapters_input = updated_params["chapters_of_the_test"]
chapter_list = [ch.strip() for ch in re.split(r'[,;]', chapters_input)]
mapped_chapters = []
for chapter in chapter_list:
result = normalize_chapter_name(chapter)
if result:
subject, correct_name = result
mapped_chapters.append(f"{correct_name} ({subject})")
else:
mapped_chapters.append(chapter)
updated_params["chapters_of_the_test"] = ", ".join(mapped_chapters)
return updated_params
except Exception as e:
print(f"Error during parameter extraction: {str(e)}")
return current_params
def get_missing_params(params: Dict[str, str]) -> List[str]:
"""Returns list of keys with empty values."""
return [key for key, val in params.items() if not val]
async def llm_generate_prompt(missing_keys: List[str]) -> str:
"""Generates a human-readable prompt to ask user for missing fields."""
context_details = {
"chapters_of_the_test": "such as Math, Science, History, etc.",
"questions_per_chapter": "the number of questions for each chapter",
"difficulty_distribution": "as percentages or numbers (easy, medium, hard)",
"test_duration": "in minutes",
"test_date": "when the test will be given",
"test_time": "the time of day for the test"
}
if len(missing_keys) == 1:
key = missing_keys[0]
return f"Please provide the {key.replace('_', ' ')} {context_details.get(key, '')}."
else:
formatted_missing = [f"{key.replace('_', ' ')} ({context_details.get(key, '')})"
for key in missing_keys]
return f"Please provide: {', '.join(formatted_missing)}."
@app.on_event("startup")
async def startup_event():
"""Initialize the application."""
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
@app.get("/")
async def health_check():
"""Health check endpoint."""
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat()}
@app.post("/chat")
async def chat(user_input: UserInput):
"""Main chat endpoint for test parameter collection."""
await cleanup_sessions()
# Create new session if none provided
if not user_input.session_id or user_input.session_id not in sessions:
session_id = str(uuid.uuid4())
sessions[session_id] = SessionState()
else:
session_id = user_input.session_id
session = sessions[session_id]
session.last_accessed = datetime.utcnow()
# Initial welcome message
if session.attempt_count == 0:
session.attempt_count += 1
return {
"response": "πŸ‘‹ Welcome! Let's set up your test. Please provide: chapters, questions per chapter, difficulty, duration, date, and time.",
"session_id": session_id,
"session_state": session.dict(),
"completed": False
}
# Process user input
session.params = await llm_extract_params(user_input.message, session.params)
session.attempt_count += 1
# Check for completion
missing = get_missing_params(session.params)
max_attempts = 8
if not missing or session.attempt_count >= max_attempts:
session.completed = True
response = ["βœ… Test setup complete:" if not missing else "⚠️ Partial information collected:"]
for k, v in session.params.items():
response.append(f"- {k.replace('_', ' ').title()}: {v or 'Not provided'}")
return {
"response": "\n".join(response),
"session_id": session_id,
"session_state": session.dict(),
"completed": True
}
# Ask for missing information
follow_up = await llm_generate_prompt(missing)
return {
"response": follow_up,
"session_id": session_id,
"session_state": session.dict(),
"completed": False
}
@app.get("/session/{session_id}")
async def get_session(session_id: str):
"""Retrieve session state."""
await cleanup_sessions()
if session_id not in sessions:
raise HTTPException(status_code=404, detail="Session not found")
sessions[session_id].last_accessed = datetime.utcnow()
return {
"session_state": sessions[session_id].dict(),
"completed": sessions[session_id].completed
}
@app.delete("/session/{session_id}")
async def delete_session(session_id: str):
"""Delete a session."""
if session_id in sessions:
del sessions[session_id]
return {"message": "Session deleted"}
@app.post("/reset")
async def reset_session(user_input: UserInput):
"""Reset a session."""
if not user_input.session_id or user_input.session_id not in sessions:
raise HTTPException(status_code=400, detail="Invalid session ID")
sessions[user_input.session_id] = SessionState()
return {
"response": "Session reset. Please provide test details.",
"session_id": user_input.session_id,
"session_state": sessions[user_input.session_id].dict(),
"completed": False
}
# For Hugging Face Spaces deployment
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 8000)))