SrujayReddy31's picture
Update app.py
9facae6 verified
raw
history blame
1.87 kB
import gradio as gr
import torch
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
import faiss # Ensure faiss is available
# Load the tokenizer, retriever, and model
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True)
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever)
# Define prediction function
def predict(input_text):
# Tokenize input
input_ids = tokenizer([input_text], return_tensors="pt").input_ids
# Generate response
outputs = model.generate(input_ids)
response = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return response
# Add example texts
examples = [
["Patient admitted with a history of heart failure and requires detailed follow-up on cardiovascular treatment."],
["What are the complications of diabetes mellitus that need to be monitored in this patient?"],
["Describe the appropriate treatment for acute respiratory distress syndrome in a critical care setting."],
["Explain the signs and symptoms that indicate a neurological emergency in a stroke patient."],
["What are the best practices for managing an infectious disease outbreak in a hospital setting?"]
]
# Create Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(lines=10, placeholder="Enter your medical question or clinical notes here..."),
outputs="text",
examples=examples,
title="MIMIC-IV RAG Implementation",
description="Use RAG (Retrieval-Augmented Generation) to generate responses or provide additional information based on clinical notes and medical questions. This model helps in generating relevant information based on existing medical literature.",
)
iface.launch()