|
from transformers import AutoModel, AutoTokenizer,AutoProcessor |
|
import streamlit as st |
|
import os |
|
from PIL import Image |
|
import torch |
|
from torchvision import io |
|
import torchvision.transforms as transforms |
|
import random |
|
import easyocr |
|
import numpy as np |
|
|
|
def start(): |
|
st.session_state.start = True |
|
|
|
def reset(): |
|
del st.session_state['start'] |
|
|
|
@st.cache_data |
|
def get_text(image_file, _model, _tokenizer): |
|
res = _model.chat(_tokenizer, image_file, ocr_type='ocr') |
|
return res |
|
|
|
@st.cache_data |
|
def extract_text_easyocr(_image): |
|
reader = easyocr.Reader(['hi'],gpu = False) |
|
results = reader.readtext(np.array(_image)) |
|
|
|
return " ".join([result[1] for result in results]) |
|
|
|
@st.cache_resource |
|
def model(): |
|
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id) |
|
model = model.eval() |
|
return model, tokenizer |
|
|
|
@st.cache_resource |
|
def highlight_keywords(text, keywords): |
|
colors = generate_unique_colors(len(keywords)) |
|
highlighted_text = text |
|
found_keywords = [] |
|
for keyword, color in zip(keywords, colors): |
|
if keyword.lower() in text.lower(): |
|
highlighted_text = highlighted_text.replace(keyword, f'<mark style="background-color: {color};">{keyword}</mark>') |
|
found_keywords.append(keyword) |
|
return highlighted_text, found_keywords |
|
|
|
def search(): |
|
st.session_state.search = True |
|
|
|
@st.cache_data |
|
def generate_unique_colors(n): |
|
colors = [] |
|
for i in range(n): |
|
color = "#{:06x}".format(random.randint(0, 0xFFFFFF)) |
|
while color in colors: |
|
color = "#{:06x}".format(random.randint(0, 0xFFFFFF)) |
|
colors.append(color) |
|
return colors |
|
|
|
st.title("A Web-Based Text Extraction and Retrieval System") |
|
|
|
language = st.selectbox("Select a language:", ["English", "Hindi"]) |
|
|
|
if language == "English": |
|
st.subheader("You selected English!") |
|
st.button("Let's get started", on_click=start) |
|
|
|
if 'start' not in st.session_state: |
|
st.session_state.start = False |
|
|
|
if 'search' not in st.session_state: |
|
st.session_state.search = False |
|
|
|
if 'reset' not in st.session_state: |
|
st.session_state.reset = False |
|
|
|
if st.session_state.start: |
|
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
st.subheader("Uploaded Image:") |
|
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) |
|
|
|
MODEL, TOKENIZER = model() |
|
|
|
if not os.path.exists("images"): |
|
os.makedirs("images") |
|
with open(f"images/{uploaded_file.name}", "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
|
|
extracted_text = get_text(f"images/{uploaded_file.name}", MODEL, TOKENIZER) |
|
|
|
st.subheader("Extracted Text") |
|
st.write(extracted_text) |
|
|
|
keywords_input = st.text_input("Enter keywords to search within the extracted text (comma-separated):") |
|
|
|
if keywords_input: |
|
keywords = [keyword.strip() for keyword in keywords_input.split(',')] |
|
highlighted_text, found_keywords = highlight_keywords(extracted_text, keywords) |
|
st.button("Search", on_click=search) |
|
|
|
if st.session_state.search: |
|
st.subheader("Search Results:") |
|
if found_keywords: |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
st.write(f"Found keywords: {', '.join(found_keywords)}") |
|
else: |
|
st.warning("No keywords were found in the extracted text.") |
|
|
|
not_found_keywords = set(keywords) - set(found_keywords) |
|
if not_found_keywords: |
|
st.error(f"Keywords not found: {', '.join(not_found_keywords)}") |
|
|
|
st.button("Reset", on_click=reset) |
|
|
|
elif language == "Hindi": |
|
st.subheader("You selected HINDI!") |
|
st.button("Let's get started", on_click=start) |
|
|
|
if 'start' not in st.session_state: |
|
st.session_state.start = False |
|
|
|
if 'search' not in st.session_state: |
|
st.session_state.search = False |
|
|
|
if 'reset' not in st.session_state: |
|
st.session_state.reset = False |
|
|
|
if st.session_state.start: |
|
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"]) |
|
|
|
if uploaded_file is not None: |
|
st.subheader("Uploaded Image:") |
|
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) |
|
image = Image.open(uploaded_file) |
|
if not os.path.exists("images"): |
|
os.makedirs("images") |
|
with open(f"images/{uploaded_file.name}", "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
extracted_text_hindi =extract_text_easyocr(image) |
|
st.subheader("Extracted Text:") |
|
st.write(extracted_text_hindi) |
|
|
|
keywords_input = st.text_input("Enter keywords to search within the extracted text (comma-separated):") |
|
if keywords_input: |
|
keywords = [keyword.strip() for keyword in keywords_input.split(',')] |
|
highlighted_text, found_keywords = highlight_keywords(extracted_text_hindi, keywords) |
|
st.button("Search", on_click=search) |
|
|
|
if st.session_state.search: |
|
st.subheader("Search Results:") |
|
if found_keywords: |
|
st.markdown(highlighted_text, unsafe_allow_html=True) |
|
st.write(f"Found keywords: {', '.join(found_keywords)}") |
|
else: |
|
st.warning("No keywords were found in the extracted text.") |
|
|
|
not_found_keywords = set(keywords) - set(found_keywords) |
|
if not_found_keywords: |
|
st.error(f"Keywords not found: {', '.join(not_found_keywords)}") |
|
st.button("Reset", on_click=reset) |
|
|