Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -150,19 +150,19 @@ problem_dropdown = gr.Dropdown(problem_numbers, label="Problem Number")
|
|
150 |
def solve_problem(exam, year, problem):
|
151 |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
|
152 |
prompt = f"Solve the following problem: {problem_statement}"
|
153 |
-
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95)
|
154 |
return response[0]['generated_text']
|
155 |
|
156 |
def give_hints(exam, year, problem):
|
157 |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
|
158 |
prompt = f"Give hints for the following problem: {problem_statement}"
|
159 |
-
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95)
|
160 |
return response[0]['generated_text']
|
161 |
|
162 |
def create_similar_problem(exam, year, problem):
|
163 |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
|
164 |
prompt = f"Create a similar problem to the following one: {problem_statement}"
|
165 |
-
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95)
|
166 |
return response[0]['generated_text']
|
167 |
|
168 |
# Define the chat response function
|
|
|
150 |
def solve_problem(exam, year, problem):
|
151 |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
|
152 |
prompt = f"Solve the following problem: {problem_statement}"
|
153 |
+
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta")
|
154 |
return response[0]['generated_text']
|
155 |
|
156 |
def give_hints(exam, year, problem):
|
157 |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
|
158 |
prompt = f"Give hints for the following problem: {problem_statement}"
|
159 |
+
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta")
|
160 |
return response[0]['generated_text']
|
161 |
|
162 |
def create_similar_problem(exam, year, problem):
|
163 |
problem_statement = df[(df["exam name"] == exam) & (df["year"] == year) & (df["problem number"] == problem)]["problem statement"].values[0]
|
164 |
prompt = f"Create a similar problem to the following one: {problem_statement}"
|
165 |
+
response = client.text_generation(prompt, max_new_tokens=512, temperature=0.7, top_p=0.95, model = "HuggingFaceH4/zephyr-7b-beta")
|
166 |
return response[0]['generated_text']
|
167 |
|
168 |
# Define the chat response function
|