Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pickle
|
3 |
from sklearn.neighbors import KNeighborsClassifier
|
@@ -9,61 +80,54 @@ from sklearn.svm import LinearSVC
|
|
9 |
from sklearn.tree import DecisionTreeClassifier
|
10 |
from sklearn.ensemble import RandomForestClassifier
|
11 |
import tensorflow as tf
|
12 |
-
import sklearn
|
13 |
-
import tensorflow
|
14 |
-
from tensorflow import keras
|
15 |
from tensorflow.keras.models import load_model
|
16 |
|
17 |
-
input_1 = gr.Image(
|
18 |
-
|
19 |
input_2 = gr.Dropdown(["SoftMax", "KNN", "Deep Neural Network", "Decision Tree", "Random Forest"])
|
20 |
-
|
21 |
output = gr.Label(num_top_classes=6)
|
22 |
|
23 |
def predict_softmax(test_img):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
def predict_knn(test_img):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
def predict_neural(test_img):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
def predict_tree(test_img):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
def predict_rf(test_img):
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
def predictDigitClass(test_img,chosen_model):
|
49 |
-
test_img_flatten=test_img.reshape(-1,28*28)
|
50 |
-
if chosen_model == "SoftMax":
|
51 |
-
fashionProbs = predict_softmax(test_img_flatten)
|
52 |
-
return fashionProbs
|
53 |
-
elif chosen_model == "KNN":
|
54 |
-
fashionProbs = predict_knn(test_img_flatten)
|
55 |
-
return fashionProbs
|
56 |
-
elif chosen_model == "Deep Neural Network":
|
57 |
-
fashionProbs = predict_neural(test_img_flatten)
|
58 |
-
return fashionProbs
|
59 |
-
elif chosen_model == "SVM":
|
60 |
-
fashionProbs = predict_svm(test_img_flatten)
|
61 |
-
return fashionProbs
|
62 |
-
elif chosen_model == "Decision Tree":
|
63 |
-
fashionProbs = predict_tree(test_img_flatten)
|
64 |
-
return fashionProbs
|
65 |
-
elif chosen_model == "Random Forest":
|
66 |
-
fashionProbs = predict_rf(test_img_flatten)
|
67 |
-
return fashionProbs
|
68 |
-
|
69 |
-
gr.Interface(fn=predictDigitClass,inputs=[input_1,input_2],outputs=output).launch(debug=True)
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import pickle
|
3 |
+
# from sklearn.neighbors import KNeighborsClassifier
|
4 |
+
# from sklearn.linear_model import LogisticRegression
|
5 |
+
# from keras.models import Sequential
|
6 |
+
# from keras.layers import Dense
|
7 |
+
# from sklearn.pipeline import Pipeline
|
8 |
+
# from sklearn.svm import LinearSVC
|
9 |
+
# from sklearn.tree import DecisionTreeClassifier
|
10 |
+
# from sklearn.ensemble import RandomForestClassifier
|
11 |
+
# import tensorflow as tf
|
12 |
+
# import sklearn
|
13 |
+
# import tensorflow
|
14 |
+
# from tensorflow import keras
|
15 |
+
# from tensorflow.keras.models import load_model
|
16 |
+
|
17 |
+
# input_1 = gr.Image(shape=(28,28),image_mode='L')
|
18 |
+
|
19 |
+
# input_2 = gr.Dropdown(["SoftMax", "KNN", "Deep Neural Network", "Decision Tree", "Random Forest"])
|
20 |
+
|
21 |
+
# output = gr.Label(num_top_classes=6)
|
22 |
+
|
23 |
+
# def predict_softmax(test_img):
|
24 |
+
# Softmax_model = pickle.load(open('softmax_model.pkl', 'rb'))
|
25 |
+
# predictions = Softmax_model.predict_proba(test_img)
|
26 |
+
# return {i: float(predictions[0][i]) for i in range(0,10)}
|
27 |
+
|
28 |
+
# def predict_knn(test_img):
|
29 |
+
# Knn_model = pickle.load(open('knn_model.pkl', 'rb'))
|
30 |
+
# predictions = Knn_model.predict_proba(test_img)
|
31 |
+
# return {i: float(predictions[0][i]) for i in range(0,10)}
|
32 |
+
|
33 |
+
# def predict_neural(test_img):
|
34 |
+
# Neural_model = load_model("deep_neural_model.h5")
|
35 |
+
# predictions = Neural_model.predict(test_img)
|
36 |
+
# return {i: float(predictions[0][i]) for i in range(0,10)}
|
37 |
+
|
38 |
+
# def predict_tree(test_img):
|
39 |
+
# tree_model = pickle.load(open('tree_clf.pkl', 'rb'))
|
40 |
+
# predictions = tree_model.predict_proba(test_img)
|
41 |
+
# return {i: float(predictions[0][i]) for i in range(0,10)}
|
42 |
+
|
43 |
+
# def predict_rf(test_img):
|
44 |
+
# rf_model = pickle.load(open('rf_clf.pkl', 'rb'))
|
45 |
+
# predictions = rf_model.predict_proba(test_img)
|
46 |
+
# return {i: float(predictions[0][i]) for i in range(0,10)}
|
47 |
+
|
48 |
+
# def predictDigitClass(test_img,chosen_model):
|
49 |
+
# test_img_flatten=test_img.reshape(-1,28*28)
|
50 |
+
# if chosen_model == "SoftMax":
|
51 |
+
# fashionProbs = predict_softmax(test_img_flatten)
|
52 |
+
# return fashionProbs
|
53 |
+
# elif chosen_model == "KNN":
|
54 |
+
# fashionProbs = predict_knn(test_img_flatten)
|
55 |
+
# return fashionProbs
|
56 |
+
# elif chosen_model == "Deep Neural Network":
|
57 |
+
# fashionProbs = predict_neural(test_img_flatten)
|
58 |
+
# return fashionProbs
|
59 |
+
# elif chosen_model == "SVM":
|
60 |
+
# fashionProbs = predict_svm(test_img_flatten)
|
61 |
+
# return fashionProbs
|
62 |
+
# elif chosen_model == "Decision Tree":
|
63 |
+
# fashionProbs = predict_tree(test_img_flatten)
|
64 |
+
# return fashionProbs
|
65 |
+
# elif chosen_model == "Random Forest":
|
66 |
+
# fashionProbs = predict_rf(test_img_flatten)
|
67 |
+
# return fashionProbs
|
68 |
+
|
69 |
+
# gr.Interface(fn=predictDigitClass,inputs=[input_1,input_2],outputs=output).launch(debug=True)
|
70 |
+
|
71 |
+
|
72 |
import gradio as gr
|
73 |
import pickle
|
74 |
from sklearn.neighbors import KNeighborsClassifier
|
|
|
80 |
from sklearn.tree import DecisionTreeClassifier
|
81 |
from sklearn.ensemble import RandomForestClassifier
|
82 |
import tensorflow as tf
|
|
|
|
|
|
|
83 |
from tensorflow.keras.models import load_model
|
84 |
|
85 |
+
input_1 = gr.Image(image_mode='L', type='numpy', preprocessing=lambda img: img.resize((28, 28)))
|
|
|
86 |
input_2 = gr.Dropdown(["SoftMax", "KNN", "Deep Neural Network", "Decision Tree", "Random Forest"])
|
|
|
87 |
output = gr.Label(num_top_classes=6)
|
88 |
|
89 |
def predict_softmax(test_img):
|
90 |
+
Softmax_model = pickle.load(open('softmax_model.pkl', 'rb'))
|
91 |
+
predictions = Softmax_model.predict_proba(test_img)
|
92 |
+
return {i: float(predictions[0][i]) for i in range(0, 10)}
|
93 |
+
|
94 |
def predict_knn(test_img):
|
95 |
+
Knn_model = pickle.load(open('knn_model.pkl', 'rb'))
|
96 |
+
predictions = Knn_model.predict_proba(test_img)
|
97 |
+
return {i: float(predictions[0][i]) for i in range(0, 10)}
|
98 |
+
|
99 |
def predict_neural(test_img):
|
100 |
+
Neural_model = load_model("deep_neural_model.h5")
|
101 |
+
predictions = Neural_model.predict(test_img)
|
102 |
+
return {i: float(predictions[0][i]) for i in range(0, 10)}
|
103 |
+
|
104 |
def predict_tree(test_img):
|
105 |
+
tree_model = pickle.load(open('tree_clf.pkl', 'rb'))
|
106 |
+
predictions = tree_model.predict_proba(test_img)
|
107 |
+
return {i: float(predictions[0][i]) for i in range(0, 10)}
|
108 |
+
|
109 |
def predict_rf(test_img):
|
110 |
+
rf_model = pickle.load(open('rf_clf.pkl', 'rb'))
|
111 |
+
predictions = rf_model.predict_proba(test_img)
|
112 |
+
return {i: float(predictions[0][i]) for i in range(0, 10)}
|
113 |
+
|
114 |
+
def predictDigitClass(test_img, chosen_model):
|
115 |
+
test_img_flatten = test_img.reshape(-1, 28*28)
|
116 |
+
if chosen_model == "SoftMax":
|
117 |
+
fashionProbs = predict_softmax(test_img_flatten)
|
118 |
+
return fashionProbs
|
119 |
+
elif chosen_model == "KNN":
|
120 |
+
fashionProbs = predict_knn(test_img_flatten)
|
121 |
+
return fashionProbs
|
122 |
+
elif chosen_model == "Deep Neural Network":
|
123 |
+
fashionProbs = predict_neural(test_img_flatten)
|
124 |
+
return fashionProbs
|
125 |
+
elif chosen_model == "Decision Tree":
|
126 |
+
fashionProbs = predict_tree(test_img_flatten)
|
127 |
+
return fashionProbs
|
128 |
+
elif chosen_model == "Random Forest":
|
129 |
+
fashionProbs = predict_rf(test_img_flatten)
|
130 |
+
return fashionProbs
|
131 |
+
|
132 |
+
gr.Interface(fn=predictDigitClass, inputs=[input_1, input_2], outputs=output).launch(debug=True)
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|