Sreeja123's picture
memristor
34e4387
raw
history blame
No virus
6.02 kB
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
class memristor_models():
def __init__(self,Roff,Ron,Rint,Amplitude,freq,time_duration,sample_rate,p,j,model):
self.initial_Roff=Roff
self.initial_Ron=Ron
self.Rint=Rint
self.Amplitude=Amplitude
self.freq=freq
self.time_duration=time_duration
self.time_duration=time_duration
self.sample_rate=sample_rate
self.p=p
self.j=j
self.model= model
# window functions
def jog(self,x1,p):
f_x = 1-(((2*x1)-1)**(2*p))
return f_x
def Prodro(self,x1,p,j):
f_x = j*(1-(((x1-0.5)**2)+0.75**p))
return f_x
def biolek(self,x1,p,i):
if i<0:
i=0
else:
i=1
f_x=1-((x1-i)**p)
return f_x
def zha(self,x1,p,j,i):
if i<0:
i=0
else:
i=1
f_x=j*((1-(0.25*(x1-i)**2)+0.75)**p)
return f_x
def ideal_model(self):
start_time = 0
time = np.arange(start_time, self.time_duration, 1/self.sample_rate)
sinewave = self.Amplitude * np.sin(2 * np.pi * self.freq * time + 0)
v_mem=sinewave
D=10*pow(10,-9)
uv=10*pow(10,-15)
delta_R=self.initial_Roff-self.initial_Ron
x=(self.initial_Roff-self.Rint)/delta_R
x_t=[]
i_mem=[]
x_t.append(x)
R_mem=[]
G=[]
f1=[]
r_val=(self.initial_Ron*x_t[0])+(self.initial_Roff*(1-x_t[0]))
R_mem.append(r_val)
k=(uv*self.initial_Ron)/(D**2)
i_mem.append(0)
for i in range(1,len(v_mem)):
i_val=v_mem[i]/R_mem[i-1]
i_mem.append(i_val)
if self.model=='Joglekar':
f=self.jog(x_t[i-1],self.p)
f1.append(f)
if self.model== 'Prodromakis':
f=self.Prodro(x_t[i-1],self.p,self.j)
f1.append(f)
if self.model== 'Biolek':
f=self.biolek(x_t[i-1],self.p,i_val)
f1.append(f)
if self.model== 'Zha':
f=self.zha(x_t[i-1],self.p,self.j,i_val)
f1.append(f)
dx_dt=k*i_mem[i-1]*f
dx=dx_dt*(time[i-1]-time[i])
x=dx+x_t[i-1]
x_t.append(x)
r_temp=(self.initial_Ron*x)+(self.initial_Roff*(1-x))
if r_temp<self.initial_Ron:
r_temp=self.initial_Ron
if r_temp>self.initial_Roff:
r_temp=self.initial_Roff
R_mem.append(r_temp)
G.append(1/r_temp)
self.Roff=max(R_mem)
self.Ron=min(R_mem)
return v_mem,i_mem,G,x_t,time,f1
def plot(self):
v,curr,G,x,t,f=self.ideal_model()
plt.plot(v,curr)
plt.ylabel('i')
plt.xlabel('v')
plt.show()
def neural_weight(self,neural_weight,X_max,X_min):
self.neural_weight=np.array(neural_weight)
new_min = (1/self.Roff)
new_max = (1/self.Ron)
# new_weights = []
self.mapped_values = []
idx = 0
for item in self.neural_weight:
self.mapped_values.append([])
for x in item:
scaled_x = ((np.abs(x) - X_min) / (X_max - X_min)) * (new_max - new_min) + new_min
if x<0:
scaled_x = scaled_x*-1
self.mapped_values[idx].append(scaled_x)
idx += 1
# Iterate over the old weights and biases and compute the new values
# for weight in neural_weight:
# new_weight = ((abs(weight) - X_min) / (X_max - X_min)) * (new_max - new_min) + new_min
# new_weight = [(new_weight[i] * -1) if weight[i]<0 else new_weight[i] for i in range(len(new_weight)) ]
# new_weights.append(new_weight)
# self.mapped_values = new_weights
def variability(self,partition,variability_percentage_Ron,variability_percentage_Roff):
v,curr,G,x,t,f = self.ideal_model()
self.partition = partition
self.variability_percentage_Ron = variability_percentage_Ron
self.variability_percentage_Roff = variability_percentage_Roff
# partitioning
self.l2 = []
self.l2.append(1/self.Roff)
step = ((1/self.Ron)-(1/self.Roff))/(self.partition-1)
for i in range(1,self.partition):
(self.l2).append(self.l2[0]+(step*i))
# adding variability to the list
new_Goff = (1/self.Roff)+(((1/self.Roff)*self.variability_percentage_Roff)/100)
(self.l2).append(new_Goff)
new_Gon = (1/self.Ron)+(((1/self.Ron)*self.variability_percentage_Ron)/100)
(self.l2).append(new_Gon)
temp = [val for val in self.l2 if (val<=new_Gon and val>=new_Goff)]
self.l2 = temp
self.l2.sort()
def new_weights(self):
self.new_values = []
idx = 0
def closest(lst, K):
return lst[min(range(len(lst)), key = lambda i: abs(lst[i]-K))]
for values in self.mapped_values:
self.new_values.append([])
for value in values:
close_val = closest(self.l2,abs(value))
if value <0:
close_val = close_val*-1000
else:
close_val = close_val*1000
self.new_values[idx].append(close_val)
idx += 1
return self.new_values
def Relative_Error (self):
Weights_with_var= self.new_weights()
self.variability(self.partition,0,0)
Weights_without_var= self.new_weights()
error=[]
for i, j in zip(np.array(Weights_without_var), np.array(Weights_with_var)):
l = (np.abs(i-j)/i)
error.append(l)
error = np.array(error)
return np.abs(np.sum(error))*100/error.size